Aritmetična progresija z n je podana s pogoji. Aritmetična progresija. Podrobna teorija s primeri (2019)

domov / Psihologija in razvoj

Na primer zaporedje \(2\); \(5\); \(8\); \(enajst\); \(14\)... je aritmetična progresija, ker se vsak naslednji element razlikuje od prejšnjega za tri (lahko ga dobimo iz prejšnjega s seštevanjem treh):

V tej progresiji je razlika \(d\) pozitivna (enaka \(3\)), zato je vsak naslednji člen večji od prejšnjega. Takšna napredovanja se imenujejo povečevanje.

Vendar je \(d\) lahko tudi negativno število. Na primer, V aritmetična progresija\(16\); \(10\); \(4\); \(-2\); \(-8\)... progresijska razlika \(d\) je enaka minus šest.

In v tem primeru bo vsak naslednji element manjši od prejšnjega. Ta napredovanja se imenujejo zmanjševanje.

Zapis aritmetične progresije

Napredovanje je označeno z malo latinično črko.

Števila, ki tvorijo progresijo, imenujemo člani(ali elementi).

Označeni so z isto črko kot aritmetična progresija, vendar z numeričnim indeksom, ki je enak številki elementa v vrstnem redu.

Na primer, aritmetična progresija \(a_n = \levo\( 2; 5; 8; 11; 14…\desno\)\) je sestavljena iz elementov \(a_1=2\); \(a_2=5\); \(a_3=8\) in tako naprej.

Z drugimi besedami, za progresijo \(a_n = \levo\(2; 5; 8; 11; 14…\desno\)\)

Reševanje nalog aritmetične progresije

Načeloma so zgoraj predstavljene informacije že dovolj za rešitev skoraj vseh problemov aritmetičnega napredovanja (vključno s tistimi, ki jih ponuja OGE).

Primer (OGE). Aritmetična progresija je podana s pogoji \(b_1=7; d=4\). Poiščite \(b_5\).
rešitev:

odgovor: \(b_5=23\)

Primer (OGE). Podani so prvi trije členi aritmetične progresije: \(62; 49; 36…\) Poiščite vrednost prvega negativnega člena te progresije..
rešitev:

Podani so nam prvi elementi zaporedja in vemo, da gre za aritmetično napredovanje. To pomeni, da se vsak element od soseda razlikuje za isto številko. Ugotovimo katerega, tako da od naslednjega elementa odštejemo prejšnjega: \(d=49-62=-13\).

Zdaj lahko obnovimo naše napredovanje na (prvi negativni) element, ki ga potrebujemo.

pripravljena Lahko napišete odgovor.

odgovor: \(-3\)

Primer (OGE). Podanih je več zaporednih elementov aritmetičnega napredovanja: \(…5; x; 10; 12,5...\) Poiščite vrednost elementa, označenega s črko \(x\).
rešitev:


Da bi našli \(x\), moramo vedeti, koliko se naslednji element razlikuje od prejšnjega, z drugimi besedami, razlika napredovanja. Poiščimo ga iz dveh znanih sosednjih elementov: \(d=12,5-10=2,5\).

In zdaj lahko zlahka najdemo, kar iščemo: \(x=5+2,5=7,5\).


pripravljena Lahko napišete odgovor.

odgovor: \(7,5\).

Primer (OGE). Podana je aritmetična progresija naslednje pogoje: \(a_1=-11\); \(a_(n+1)=a_n+5\) Poiščite vsoto prvih šestih členov tega napredovanja.
rešitev:

Najti moramo vsoto prvih šestih členov napredovanja. Vendar ne poznamo njihovih pomenov; dan nam je le prvi element. Zato najprej izračunamo vrednosti eno za drugo, pri čemer uporabimo tisto, kar nam je dano:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
In ko izračunamo šest elementov, ki jih potrebujemo, najdemo njihovo vsoto.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Zahtevani znesek je bil najden.

odgovor: \(S_6=9\).

Primer (OGE). V aritmetični progresiji \(a_(12)=23\); \(a_(16)=51\). Poiščite razliko tega napredovanja.
rešitev:

odgovor: \(d=7\).

Pomembne formule za aritmetično napredovanje

Kot lahko vidite, je veliko težav pri aritmetičnem napredovanju mogoče rešiti preprosto z razumevanjem glavne stvari - da je aritmetično napredovanje veriga števil, vsak naslednji element v tej verigi pa dobimo z dodajanjem istega števila prejšnjemu ( razlika v napredovanju).

Vendar pa včasih pride do situacij, ko je odločitev "na glavo" zelo neprijetna. Na primer, predstavljajte si, da v prvem primeru ne moramo najti petega elementa \(b_5\), temveč tristo šestinosemdesetega \(b_(386)\). Ali naj dodamo štiri \(385\)-krat? Ali pa si predstavljajte, da morate v predzadnjem primeru najti vsoto prvih triinsedemdeset elementov. Utrujeni boste od štetja ...

Zato v takšnih primerih stvari ne rešujejo »na glavo«, temveč uporabljajo posebne formule, izpeljane za aritmetično progresijo. In glavni sta formula za n-ti člen napredovanja in formula za vsoto \(n\) prvih členov.

Formula \(n\)-tega člena: \(a_n=a_1+(n-1)d\), kjer je \(a_1\) prvi člen napredovanja;
\(n\) – številka zahtevanega elementa;
\(a_n\) – člen napredovanja s številko \(n\).


Ta formula nam omogoča, da hitro najdemo tudi tristoti ali milijonti element, pri čemer poznamo samo prvi in ​​razliko progresije.

Primer. Aritmetična progresija je podana s pogoji: \(b_1=-159\); \(d=8,2\). Poiščite \(b_(246)\).
rešitev:

odgovor: \(b_(246)=1850\).

Formula za vsoto prvih n členov: \(S_n=\frac(a_1+a_n)(2) \cdot n\), kjer



\(a_n\) – zadnji seštevani izraz;


Primer (OGE). Aritmetična progresija je podana s pogoji \(a_n=3,4n-0,6\). Poiščite vsoto prvih \(25\) členov tega napredovanja.
rešitev:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

Za izračun vsote prvih petindvajsetih členov moramo poznati vrednost prvega in petindvajsetega člena.
Naše napredovanje je podano s formulo n-tega člena glede na njegovo število (za več podrobnosti glej). Izračunajmo prvi element tako, da \(n\) nadomestimo enega.

\(n=1;\) \(a_1=3,4·1-0,6=2,8\)

Zdaj pa poiščimo petindvajseti člen tako, da zamenjamo petindvajset namesto \(n\).

\(n=25;\) \(a_(25)=3,4·25-0,6=84,4\)

No, zdaj lahko preprosto izračunamo zahtevano količino.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

Odgovor je pripravljen.

odgovor: \(S_(25)=1090\).

Za vsoto \(n\) prvih členov lahko dobite drugo formulo: samo \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\ ) namesto \(a_n\) nadomestite s formulo \(a_n=a_1+(n-1)d\). Dobimo:

Formula za vsoto prvih n členov: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), kjer

\(S_n\) – zahtevana vsota \(n\) prvih elementov;
\(a_1\) – prvi seštevek;
\(d\) – razlika napredovanja;
\(n\) – skupno število elementov.

Primer. Poiščite vsoto prvih \(33\)-ex členov aritmetične progresije: \(17\); \(15,5\); \(14\)…
rešitev:

odgovor: \(S_(33)=-231\).

Bolj zapleteni problemi aritmetične progresije

Zdaj imate vse informacije, ki jih potrebujete za rešitev skoraj vseh nalog aritmetičnega napredovanja. Zaključimo temo z obravnavo problemov, pri katerih ne potrebujete samo uporabe formul, ampak tudi malo razmišljati (pri matematiki je to lahko koristno ☺)

Primer (OGE). Poiščite vsoto vseh negativnih členov napredovanja: \(-19,3\); \(-19\); \(-18,7\)…
rešitev:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Naloga je zelo podobna prejšnji. Začnemo reševati isto stvar: najprej najdemo \(d\).

\(d=a_2-a_1=-19-(-19,3)=0,3\)

Zdaj bi rad zamenjal \(d\) v formulo za vsoto ... in tukaj se pojavi majhna niansa - ne poznamo \(n\). Z drugimi besedami, ne vemo, koliko izrazov bo treba dodati. Kako ugotoviti? Pomislimo. Elemente bomo prenehali dodajati, ko dosežemo prvi pozitivni element. To pomeni, da morate ugotoviti število tega elementa. kako Zapišimo formulo za izračun poljubnega elementa aritmetične progresije: \(a_n=a_1+(n-1)d\) za naš primer.

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1)·0,3\)

Potrebujemo \(a_n\), da postanemo Nad ničlo. Ugotovimo, pri katerem \(n\) se bo to zgodilo.

\(-19,3+(n-1)·0,3>0\)

\((n-1)·0,3>19,3\) \(|:0,3\)

Obe strani neenakosti delimo z \(0,3\).

\(n-1>\)\(\frac(19,3)(0,3)\)

Prenesemo minus ena, ne da bi pozabili spremeniti znake

\(n>\)\(\frac(19,3)(0,3)\) \(+1\)

Izračunajmo...

\(n>65.333…\)

...in izkaže se, da bo imel prvi pozitivni element število \(66\). V skladu s tem ima zadnji negativni \(n=65\). Za vsak slučaj, preverimo to.

\(n=65;\) \(a_(65)=-19,3+(65-1)·0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1)·0,3=0,2\)

Zato moramo dodati prvih \(65\) elementov.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Odgovor je pripravljen.

odgovor: \(S_(65)=-630,5\).

Primer (OGE). Aritmetična progresija je podana s pogoji: \(a_1=-33\); \(a_(n+1)=a_n+4\). Poiščite vsoto od \(26\) do vključno \(42\) elementa.
rešitev:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

V tej nalogi morate najti tudi vsoto elementov, vendar ne od prvega, ampak od \(26\)th. Za tak primer nimamo formule. Kako se odločiti?
Preprosto je – če želite dobiti vsoto od \(26\)-te do \(42\)-te, morate najprej poiskati vsoto od \(1\)-te do \(42\)-te in nato odšteti iz njega vsota od prvega do \(25\)-ega (glej sliko).


Za naše napredovanje \(a_1=-33\) in razliko \(d=4\) (navsezadnje dodamo štiri prejšnjemu elementu, da najdemo naslednjega). Če to vemo, najdemo vsoto prvih \(42\)-y elementov.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Sedaj vsota prvih \(25\) elementov.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

In končno izračunamo odgovor.

\(S=S_(42)-S_(25)=2058-375=1683\)

odgovor: \(S=1683\).

Za aritmetično progresijo obstaja več formul, ki jih v tem članku nismo upoštevali zaradi njihove majhne praktične uporabnosti. Vendar jih lahko zlahka najdete.

Prva stopnja

Aritmetična progresija. Podrobna teorija s primeri (2019)

Zaporedje številk

Torej, usedimo se in začnimo pisati nekaj številk. Na primer:
Napišete lahko poljubne številke in jih je lahko poljubno (v našem primeru jih je). Ne glede na to, koliko števil napišemo, vedno lahko povemo, katera je prva, katera druga in tako do zadnjega, torej jih lahko oštevilčimo. To je primer številskega zaporedja:

Zaporedje številk
Na primer za naše zaporedje:

Dodeljena številka je specifična samo za eno številko v zaporedju. Z drugimi besedami, v zaporedju ni treh drugih številk. Drugo število (tako kot th) je vedno enako.
Število s številom se imenuje th člen zaporedja.

Običajno imenujemo celotno zaporedje z neko črko (na primer,), vsak člen tega zaporedja pa je ista črka z indeksom, ki je enak številu tega člena: .

V našem primeru:

Recimo, da imamo številčno zaporedje, pri katerem je razlika med sosednjimi številkami enaka in enaka.
Na primer:

itd.
To številsko zaporedje imenujemo aritmetična progresija.
Izraz »progresija« je uvedel rimski avtor Boecij že v 6. stoletju in ga je razumel v širšem smislu kot neskončno številčno zaporedje. Ime "aritmetika" je bilo preneseno iz teorije zveznih razmerij, ki so jo preučevali stari Grki.

To je številsko zaporedje, katerega vsak člen je enak prejšnjemu, dodanemu istemu številu. To število imenujemo razlika aritmetične progresije in je označeno.

Poskusite ugotoviti, katera številska zaporedja so aritmetična progresija in katera ne:

a)
b)
c)
d)

Razumem? Primerjajmo naše odgovore:
je aritmetična progresija - b, c.
Ni aritmetična progresija - a, d.

Vrnimo se k dani progresiji () in poskusimo najti vrednost njenega th člena. obstaja dva način, kako ga najti.

1. Metoda

Število napredovanja lahko dodajamo prejšnji vrednosti, dokler ne dosežemo th člena napredovanja. Še dobro, da nimamo veliko za povzemati - samo tri vrednosti:

Torej je th člen opisane aritmetične progresije enak.

2. Metoda

Kaj pa, če bi morali najti vrednost th člena napredovanja? Seštevanje bi nam vzelo več kot eno uro in ni dejstvo, da se pri seštevanju številk ne bi zmotili.
Seveda so se matematiki domislili načina, da prejšnji vrednosti ni treba dodajati razlike aritmetične progresije. Pobližje si oglejte narisano sličico ... Zagotovo ste že opazili določen vzorec in sicer:

Na primer, poglejmo, iz česa je sestavljena vrednost th člena te aritmetične progresije:


Z drugimi besedami:

Poskusite na ta način sami poiskati vrednost člana dane aritmetične progresije.

Ste izračunali? Primerjajte svoje zapiske z odgovorom:

Upoštevajte, da ste dobili popolnoma enako število kot v prejšnji metodi, ko smo prejšnji vrednosti zaporedno dodali člene aritmetičnega napredovanja.
Poskusimo "depersonalizirati" to formulo - vključimo jo splošna oblika in dobimo:

Aritmetična progresijska enačba.

Aritmetične progresije so lahko naraščajoče ali padajoče.

Povečanje- progresije, pri katerih je vsaka naslednja vrednost členov večja od prejšnje.
Na primer:

Sestopanje- napredovanja, pri katerih je vsaka naslednja vrednost členov manjša od prejšnje.
Na primer:

Izpeljana formula se uporablja pri izračunu členov v naraščajočih in padajočih členih aritmetične progresije.
Preverimo to v praksi.
Dobili smo aritmetično progresijo, sestavljeno iz naslednjih števil: Preverite, kakšno bo th število te aritmetične progresije, če za izračun uporabimo našo formulo:


Od takrat:

Tako smo prepričani, da formula deluje tako v padajoči kot v naraščajoči aritmetični progresiji.
Poskusite sami poiskati th in th člen te aritmetične progresije.

Primerjajmo rezultate:

Lastnost aritmetične progresije

Zakomplicirajmo problem - izpeljali bomo lastnost aritmetične progresije.
Recimo, da imamo naslednji pogoj:
- aritmetična progresija, poiščite vrednost.
Enostavno, rečete in začnete šteti po formuli, ki jo že poznate:

Naj, ah, potem pa:

Popolnoma prav. Izkazalo se je, da najprej najdemo, nato dodamo prvi številki in dobimo, kar iščemo. Če je progresija predstavljena z majhnimi vrednostmi, potem ni nič zapletenega, kaj pa, če so nam v pogoju podane številke? Strinjam se, obstaja možnost napake pri izračunih.
Zdaj pomislite, ali je mogoče ta problem rešiti v enem koraku s katero koli formulo? Seveda da, in to je tisto, kar bomo zdaj poskušali razkriti.

Zahtevani člen aritmetične progresije označimo tako, da nam je formula za iskanje znana - to je ista formula, ki smo jo izpeljali na začetku:
, potem:

  • prejšnji izraz napredovanja je:
  • naslednji člen napredovanja je:

Povzemimo prejšnje in nadaljnje pogoje napredovanja:

Izkazalo se je, da je vsota prejšnjega in naslednjih členov napredovanja dvojna vrednost člena napredovanja, ki se nahaja med njima. Z drugimi besedami, da bi našli vrednost napredovalnega izraza z znanimi prejšnjimi in zaporednimi vrednostmi, jih morate sešteti in deliti z.

Tako je, dobili smo isto številko. Zavarujmo material. Sami izračunajte vrednost napredovanja, sploh ni težko.

Dobro opravljeno! O napredovanju veš skoraj vse! Najti je treba samo eno formulo, ki jo je po legendi zlahka izvedel eden največjih matematikov vseh časov, "kralj matematikov" - Karl Gauss ...

Ko je bil Carl Gauss star 9 let, je učitelj, zaposlen s preverjanjem dela učencev v drugih razredih, v razredu dodelil naslednjo nalogo: "Izračunajte vsoto vseh naravnih števil od do (po drugih virih do) vključno." Predstavljajte si učiteljevo presenečenje, ko je eden od njegovih učencev (to je bil Karl Gauss) minuto pozneje dal pravilen odgovor na nalogo, medtem ko je večina pogumnih sošolcev po dolgih izračunih dobila napačen rezultat ...

Mladi Carl Gauss je opazil določen vzorec, ki ga zlahka opazite tudi vi.
Recimo, da imamo aritmetično progresijo, sestavljeno iz -th členov: Najti moramo vsoto teh členov aritmetične progresije. Seveda lahko ročno seštejemo vse vrednosti, a kaj, če naloga zahteva iskanje vsote njegovih členov, kot je iskal Gauss?

Upodabljajmo napredovanje, ki nam je dano. Pobližje si oglejte označena števila in poskusite z njimi izvesti različne matematične operacije.


Ste poskusili? Kaj ste opazili? Prav! Njuni vsoti sta enaki


Zdaj pa mi povejte, koliko je takih parov skupaj v napredovanju, ki nam je dano? Seveda natanko polovica vseh številk, tj.
Na podlagi dejstva, da je vsota dveh členov aritmetične progresije enaka, podobni pari pa so enaki, dobimo, da je skupna vsota enaka:
.
Tako bo formula za vsoto prvih členov katerega koli aritmetičnega napredovanja:

Pri nekaterih težavah ne poznamo th člena, poznamo pa razliko napredovanja. Poskusite zamenjati formulo th člena v formulo vsote.
Kaj si dobil?

Dobro opravljeno! Zdaj pa se vrnimo k problemu, ki je bil zastavljen Carlu Gaussu: sami izračunajte, čemu je enaka vsota števil, ki se začnejo s th, in vsota števil, ki se začnejo s th.

Koliko si dobil?
Gauss je ugotovil, da je vsota členov enaka in vsota členov. Ste se tako odločili?

Pravzaprav je formulo za vsoto členov aritmetične progresije dokazal starogrški znanstvenik Diofant že v 3. stoletju in ves ta čas so duhoviti ljudje v celoti izkoristili lastnosti aritmetične progresije.
Na primer, predstavljajte si Starodavni Egipt in največji gradbeni podvig tistega časa - gradnja piramide... Slika prikazuje njeno eno stran.

Kje je tu napredek, pravite? Pozorno poglejte in poiščite vzorec v številu peščenih blokov v vsaki vrsti stene piramide.


Zakaj ne aritmetična progresija? Izračunajte, koliko blokov je potrebnih za gradnjo ene stene, če so bloki opeke postavljeni na dno. Upam, da ne boste šteli med premikanjem prsta po monitorju, se spomnite zadnje formule in vsega, kar smo povedali o aritmetični progresiji?

V tem primeru je napredovanje videti takole: .
Razlika aritmetične progresije.
Število členov aritmetične progresije.
Nadomestimo naše podatke v zadnje formule (izračunajte število blokov na 2 načina).

1. metoda.

Metoda 2.

In zdaj lahko izračunate na monitorju: primerjajte dobljene vrednosti s številom blokov, ki so v naši piramidi. Razumem? Bravo, obvladali ste vsoto n-tih členov aritmetičnega napredovanja.
Seveda ne morete zgraditi piramide iz blokov na dnu, ampak iz? Poskusite izračunati, koliko peščenih opek je potrebnih za gradnjo stene s tem pogojem.
Vam je uspelo?
Pravilen odgovor je bloki:

Usposabljanje

Naloge:

  1. Maša se pripravlja na poletje. Vsak dan poveča število počepov za. Kolikokrat bo Maša naredila počepe v enem tednu, če je počepe naredila na prvem treningu?
  2. Kakšna je vsota vseh lihih števil v.
  3. Drvarji pri skladiščenju polen zlagajo tako, da je v vsaki zgornji plasti en polen manj kot v prejšnji. Koliko brun je v enem zidu, če je temelj zidu bruna?

odgovori:

  1. Določimo parametre aritmetične progresije. V tem primeru
    (tedni = dnevi).

    odgovor:Čez dva tedna naj bi Maša delala počepe enkrat na dan.

  2. Prva liha številka, zadnja številka.
    Razlika aritmetične progresije.
    Število lihih števil je polovica, vendar preverimo to dejstvo s formulo za iskanje th člena aritmetičnega napredovanja:

    Številke vsebujejo liha števila.
    Zamenjajmo razpoložljive podatke v formulo:

    odgovor: Vsota vseh lihih števil v je enaka.

  3. Spomnimo se problema o piramidah. Za naš primer je a , ker je vsaka zgornja plast zmanjšana za en dnevnik, potem je skupaj kup plasti, tj.
    Zamenjajmo podatke v formulo:

    odgovor: V zidu so hlodi.

Naj povzamemo

  1. - številsko zaporedje, v katerem je razlika med sosednjimi števili enaka in enaka. Lahko se povečuje ali zmanjšuje.
  2. Iskanje formule 3. člen aritmetičnega napredovanja zapišemo s formulo - , kjer je število števil v napredovanju.
  3. Lastnost članov aritmetične progresije- - kjer je število števil v napredovanju.
  4. Vsota členov aritmetične progresije lahko najdete na dva načina:

    , kjer je število vrednosti.

ARITMETIČNA PROGRESIJA. POVPREČNA STOPNJA

Zaporedje številk

Usedimo se in začnimo pisati nekaj številk. Na primer:

Napišete lahko poljubne številke in lahko jih je poljubno veliko. Vedno pa lahko povemo, katera je prva, katera druga in tako naprej, se pravi, da jih lahko oštevilčimo. To je primer številskega zaporedja.

Zaporedje številk je niz številk, od katerih je vsakemu mogoče dodeliti edinstveno številko.

Z drugimi besedami, vsako število je mogoče povezati z določenim naravnim številom in edinstvenim. In te številke ne bomo dodelili nobeni drugi številki iz tega niza.

Število s številko imenujemo th člen zaporedja.

Običajno imenujemo celotno zaporedje z neko črko (na primer,), vsak člen tega zaporedja pa je ista črka z indeksom, ki je enak številu tega člena: .

Zelo priročno je, če lahko th člen zaporedja podamo z neko formulo. Na primer, formula

nastavi zaporedje:

In formula je naslednje zaporedje:

Na primer, aritmetična progresija je zaporedje (prvi člen je enak, razlika pa je). Ali (, razlika).

n-ti člen formula

Formulo imenujemo ponavljajoča se, v kateri morate, da bi ugotovili th člen, poznati prejšnjega ali več prejšnjih:

Da bi našli na primer th člen napredovanja s to formulo, bomo morali izračunati prejšnjih devet. Na primer, pustite. Nato:

No, je zdaj jasno, kakšna je formula?

V vsaki vrstici dodamo, pomnožimo z določeno številko. Kateri? Zelo preprosto: to je številka trenutnega člana minus:

Zdaj je veliko bolj priročno, kajne? Preverjamo:

Odločite se sami:

V aritmetični progresiji poiščite formulo za n-ti člen in poiščite stoti člen.

rešitev:

Prvi člen je enak. Kakšna je razlika? Evo kaj:

(Zato se imenuje razlika, ker je enaka razliki zaporednih členov napredovanja).

Torej, formula:

Potem je stoti člen enak:

Kolikšna je vsota vseh naravnih števil od do?

Po legendi je veliki matematik Carl Gauss kot 9-letni deček v nekaj minutah izračunal to količino. Opazil je, da je vsota prvega in zadnji datum je enak, vsota drugega in predzadnjega je enaka, vsota tretjega in 3. od konca je enaka itd. Koliko je teh parov skupaj? Tako je, točno polovica števila vseh števil, torej. Torej,

Splošna formula za vsoto prvih členov katerega koli aritmetičnega napredovanja bo:

primer:
Poiščite vsoto vseh dvomestnih večkratnikov.

rešitev:

Prva takšna številka je ta. Vsako naslednje število dobimo s seštevanjem prejšnjega števila. Tako števila, ki nas zanimajo, tvorijo aritmetično progresijo s prvim členom in razliko.

Formula th člena za to napredovanje:

Koliko členov je v napredovanju, če morajo biti vsi dvomestni?

Zelo enostavno: .

Zadnji člen napredovanja bo enak. Nato vsota:

Odgovor: .

Zdaj se odločite sami:

  1. Vsak dan športnik preteče več metrov kot prejšnji dan. Koliko skupno kilometrov bo pretekel v enem tednu, če je prvi dan pretekel km m?
  2. Kolesar vsak dan prevozi več kilometrov kot prejšnji dan. Prvi dan je prevozil km. Koliko dni mora potovati, da premaga kilometer? Koliko kilometrov bo prevozil v zadnjem dnevu svojega potovanja?
  3. Vsako leto se za toliko zniža cena hladilnika v trgovini. Ugotovite, za koliko se je vsako leto znižala cena hladilnika, če je bil dan v prodajo za rublje šest let pozneje prodan za rublje.

odgovori:

  1. Pri tem je najpomembnejše prepoznati aritmetično progresijo in določiti njene parametre. V tem primeru (tedni = dnevi). Določiti morate vsoto prvih členov tega napredovanja:
    .
    odgovor:
  2. Tukaj je podano: , je treba najti.
    Očitno morate uporabiti isto formulo vsote kot v prejšnjem problemu:
    .
    Zamenjajte vrednosti:

    Koren očitno ne ustreza, zato je odgovor.
    Izračunajmo pot, prevoženo v zadnjem dnevu, z uporabo formule th člena:
    (km).
    odgovor:

  3. Podano: . Najti: .
    Ne more biti bolj preprosto:
    (drgniti).
    odgovor:

ARITMETIČNA PROGRESIJA. NA KRATKO O GLAVNEM

To je številsko zaporedje, v katerem je razlika med sosednjimi številkami enaka in enaka.

Aritmetična progresija je lahko naraščajoča () in padajoča ().

Na primer:

Formula za iskanje n-tega člena aritmetičnega napredovanja

se zapiše s formulo, kjer je število števil v progresiji.

Lastnost članov aritmetične progresije

Omogoča vam enostavno iskanje člena progresije, če so njegovi sosednji členi znani - kje je število števil v progresiji.

Vsota členov aritmetične progresije

Znesek lahko najdete na dva načina:

Kje je število vrednosti.

Kje je število vrednosti.

Moto naše lekcije bodo besede ruskega matematika V.P. Ermakova: "V matematiki se ne smemo spomniti formul, ampak miselnih procesov."

Med poukom

Oblikovanje problema

Na tabli je Gaussov portret. Učitelj ali učenec, ki je dobil nalogo, da vnaprej pripravi sporočilo, pravi, da je učitelj, ko je bil Gauss v šoli, prosil učence, naj seštejejo vse cela števila od 1 do 100. Mali Gauss je to težavo rešil v minuti.

vprašanje . Kako je Gauss dobil odgovor?

Iskanje rešitev

Učenci izrazijo svoje domneve, nato povzemajo: ugotovijo, da so vsote 1 + 100, 2 + 99 itd. sta enaka, je Gauss pomnožil 101 s 50, to je s številom takih vsot. Z drugimi besedami, opazil je vzorec, ki je neločljivo povezan z aritmetično progresijo.

Izpeljava formule vsote n prvi členi aritmetičnega napredovanja

Zapišite temo lekcije na tablo in v zvezke. Učenci skupaj z učiteljem zapišejo zaključek formule:

Pustiti a 1 ; a 2 ; a 3 ; a 4 ; ...; a n – 2 ; a n – 1 ; a n- aritmetična progresija.

Primarna konsolidacija

1. S formulo (1) rešimo Gaussov problem:

2. S formulo (1) ustno rešite naloge (njihovi pogoji so zapisani na tabli ali pozitivni kodi), ( a n) - aritmetična progresija:

A) a 1 = 2, a 10 = 20. S 10 - ?

b) a 1 = –5, a 7 = 1. S 7 - ? [–14]

V) a 1 = –2, a 6 = –17. S 6 - ? [–57]

G) a 1 = –5, a 11 = 5. S 11 - ?

3. Izpolni nalogo.

Podano: ( a n) - aritmetična progresija;

a 1 = 3, a 60 = 57.

Najti: S 60 .

rešitev. Uporabimo formulo vsote n prvi členi aritmetičnega napredovanja

Odgovori: 1800.

Dodatno vprašanje. Koliko vrst različnih problemov je mogoče rešiti s to formulo?

Odgovori. Štiri vrste nalog:

Poiščite znesek S n;

Poiščite prvi člen aritmetičnega napredovanja a 1 ;

Najti nčlen aritmetične progresije a n;

Poiščite število členov aritmetičnega napredovanja.

4. Izpolni nalogo: št. 369(b).

Poiščite vsoto prvih šestdeset členov aritmetične progresije ( a n), če a 1 = –10,5, a 60 = 51,5.

rešitev.

Odgovori: 1230.

Dodatno vprašanje. Zapiši formulo nčlen aritmetične progresije.

Odgovori: a n = a 1 + d(n – 1).

5. Izračunajte formulo za prvih devet členov aritmetične progresije ( b n),
če b 1 = –17, d = 6.

Ali je mogoče takoj izračunati s formulo?

Ne, ker deveti mandat ni znan.

Kako ga najti?

Po formuli nčlen aritmetične progresije.

rešitev. b 9 = b 1 + 8d = –17 + 8∙6 = 31;

Odgovori: 63.

vprašanje. Ali je mogoče najti vsoto, ne da bi izračunali deveti člen progresije?

Oblikovanje problema

Težava: pridobivanje formule vsote n prvi členi aritmetičnega napredovanja, poznavanje njegovega prvega člena in razlike d.

(Študent izpelje formulo na tabli.)

Rešimo št. 371(a) z uporabo nove formule (2):

Ustno določimo formule (2) ( pogoji nalog so zapisani na tabli).

(a n

1. a 1 = 3, d = 4. S 4 - ?

2. a 1 = 2, d = –5. S 3 - ? [–9]

Od učencev ugotovite, katera vprašanja so nejasna.

Samostojno delo

Možnost 1

dano: (a n) - aritmetična progresija.

1. a 1 = –3, a 6 = 21. S 6 - ?

2. a 1 = 6, d = –3. S 4 - ?

Možnost 2

dano: (a n) - aritmetična progresija.

1.a 1 = 2, a 8 = –23. S 8 - ? [–84]

2.a 1 = –7, d = 4. S 5 - ?

Učenci si izmenjajo zvezke in drug pri drugem preverjajo rešitve.

Povzemite učenje snovi na podlagi rezultatov samostojnega dela.



© 2024 rupeek.ru -- Psihologija in razvoj. Osnovna šola. Višji razredi