Перспективы 3д принтера. D-печать для бытовых нужд. Собственный опыт. Видео: как работает механизм

Главная / Психология и развитие

Создание физического 3D-объекта по цифровому прототипу с помощью практически портативного устройства, 3 D - принтера, открывает много интересных возможностей в творчестве, искусстве, науке, бизнесе, других сферах деятельности человека и даже просто в быту.

На текущем этапе развития аддитивных технологий (технологий послойного синтеза) в области быстрого прототипирования и производства 3D-объектов возможность их использования в домашних условиях или в условиях небольшого производства уже более чем доступна. Приемлемые цены на сами устройства, на их обслуживание и на расходные материалы привлекают предприимчивых и просто увлеченных людей, заинтересованных в развитии малого бизнеса или домашнего творчества.

В обзоре под понятием «домашние принтеры» рассматриваются устройства низших ценовых категорий, т.е. самые дешевые 3D-принтеры для дома или небольшой мастерской, небольшого офиса, и только из тех, которые можно запросто купить в российских интернет-магазинах. В каталоге 3dprint.tkat.ru собраны и сгруппированы предложения российских интернет магазинов, продающих 3D принтеры.

В таких устройствах чаще всего используется метод моделирования объектов путем послойного наплавления рабочего материала (в основном нити из пластика, в некоторых моделях - металла, воска, пластилина, глины, керамики), подаваемого экструзионной головкой на платформу. Эта технология обозначается аббревиатурой FDM, от английского fused deposition modeling. Самые распространенные для FDM виды используемого пластика – ABS (АБС – Акрилонитрилбутадиенстирол, ударопрочный и эластичный, долговечный, но подвержен разрушению под воздействием ультрафиолета) и PLA (ПЛА – Полилактид, самый экологичный и биологически совместимый термопластичный полиэфир, изготавливаемый из отходов сахарной свеклы или кукурузы, однако достаточно быстро разлагаемый)

1. Обзор возможностей домашних 3D-принтеров

1.1..Быстрое прототипирование. Сегодня даже самый дешевый и простой настольный 3Д-принтер, купленный со скидкой как некондиционный (после приведения в кондицию, конечно), может напечатать трехмерную модель из пластика с точностью в 100 микрон. Человек при этом участвует только как оператор ЭВМ, а напечатанный предмет будет точной копией компьютерной 3Д модели. В этом огромный потенциал возможностей для творчества и искусства. В целях моделирования, прототипирования и в практических целях можно печатать модели изобретений, техники, зданий, мебели, аксессуаров, различные бытовые устройства и приспособления, которых не купишь в магазине. Можно печатать подарки родным и близким: сувениры, бижутерию, конструкторы, игрушки и т.д.

1.2..Самовоспроизведение (репликация). Так называемый проект RepRap. Проект подразумевает создание такого принтера, который сможет полностью воспроизвести себя, то есть все свои детали. Сейчас уже есть принтеры RepRap, способные к самовоспроизведению на 50 процентов и чуть более пятидесяти.

1.3..Печать оружия на 3 D-принтере. В принципе можно напечатать и боевой пистолет, и нож, и кастет, и алебарду - такие прецеденты уже есть. Но подробное описание этих возможностей опустим за ненадобностью, так как за изготовление, переделку и ремонт оружия предусмотрена уголовная ответственность со сроками лишения свободы до 8-ми лет. Печатайте модели, но не боевое оружие.

2. Краткий обзор нескольких бюджетных моделей

2.1.. . Производитель предлагает две модели, MBot Wood Double Head (в деревянном корпусе) и MBot Cube II (в стальном корпусе с напылением). Эти принтеры имеют две или одну экструзионные головки, в зависимости от модификации. Две головки дают возможность печатать одновременно двумя цветами, что, безусловно, относится к плюсам устройства. Минусом эксперты называют отсутствие гарантии и затрудненную обратную связь с производителем, китайской компанией Magicfirm. В общем обе модели оценивают в среднем на 7-8 баллов из 10. Домашний 3D-принтер Mbot Cube работает ABS и PLA материалами. Диаметр используемого волокна – 1,75 мм. Скорость печати – приблизительно 40 мм/с. С такой скоростью объект средних размеров типа корпуса мобильного телефона напечатается за время чуть больше одного часа. Максимально возможный объем печатаемого объекта 8 и почти 12 литров (200 х 200 х 200 мм - для MBot Wood Double Head и 260 х 230 х 200 мм – для MBot Cube II). Для управления устройством имеется жидкокристаллический не сенсорный дисплей. Оба устройства поставляются с блоками питания, USB-кабелями, SD-картой, программным обеспечением для OSX/Windows/Linux, пробной порцией расходного материала. Wi-Fi подключение и подключение флэш накопителей не поддерживаются.

2.2.. 3D принтер PP3DP UP! Plus 2 . Один из пионеров домашних 3D-принтеров, поддерживающихся платформой Windows 8.1. Тем, у кого на компьютере установлена эта операционная система, нет необходимости в специальном программном обеспечении и драйверах. В комплекте с Win 8.1 все это уже есть для работы с Up! Plus 2. От предыдущей модификации, UP! Plus, эта модель внешне отличается незначительно, оставлен открытый дизайн (кстати, для печати ABS пластиками это не совсем хорошо, так как для них требуется постоянная равномерная температура, зато хорошо для печати PLA пластиками). Зато существенно усовершенствован двигатель и система проводки, полностью автоматизирована калибровка платформы, что немаловажно, особенно для начинающих. Обе модели, несмотря на то, что имеют по одному экструдеру, могут печатать разными цветами. Для этого в новом софте, от версии 2 и выше, предусмотрена возможность остановки печати, замены цвета пластика и возобновление печати уже новым цветом. Подключение к управляющему компьютеру только посредством USB. Имея небольшой вес и габариты, годовую гарантию, этот принтер прекрасно подходит для домашнего использования. Объем печати 140 х 140 х 135 мм, это 2,7 литра, значительно меньше, чем у MBot. Для печати используются ABS и PLA филаменты, причем катушка ABS пластика есть в комплекте с принтером (это логично, он же дешевле, чем PLA). В среднем этот принтер оценивается на 6,5 баллов из 10.

2.3.. и MyRiwell 3D принтер RL-200A . Китайские 3D принтеры в ярком, представляемом в разных цветах, закрытом корпусе. Закрытая конструкция - основной плюс при печати ABS пластиком. Но, с другой стороны, тяжелее печатать PLA пластиками, так как недостаточно циркуляции воздушных масс, даже если выполнять печать с открытой крышкой. Точность (разрешение) печати - 150 мкм, объем печати 225х145х150 мм (4,9 литра). Это хорошие параметры для такого класса устройств. Однако, реально эти параметры в силу особенностей конструкции используются не в полной мере, печатать с высоким качеством на этом принтере проблематично. Использовать его целесообразно только в домашних условиях, для промышленного качества 3D-прототипирования он не дотягивает. В среднем можно оценить этот принтер на 6 баллов из 10.

2.4.. 3D принтер WANHAO Duplicator 4 и . Второй отличается от первого только наличием сверху основного корпуса корпуса термокамеры, поддерживающей оптимальный температурный режим в зоне печати для предотвращения деламинации, деформации и расслоения 3D модели. Обе модификации – это китайский вариант американского MakerBot Replicator 2. Китайцы добились почти таких же характеристик как и у американского прототипа, но в два раза меньшей ценой завоевали внимание покупателей. Как и американцы, китайцы используют в своем дупликаторе сопла достаточно крупного диаметра, 0,4 мм, это многовато для высококачественной 3D печати. Американцы компенсировали этот недостаток гибким программным обеспечением, а китайцы – низкой ценой принтера. Обе модификации Duplicator выпускаются в трех видах корпуса каждый, вернее в корпусах из разного материала – пластика, дерева и металла. И в каждом из корпусов размещают начинку с одним или двумя экструдерами. Понятно, что при двух экструдерах доступна цветная, точнее даже разноцветная печать. Цветная доступна и при одном экструдере, при использовании разноцветных пластиков. Кроме того, в отличие от Replicator 2, Duplicator 4 и 4Х используют метод подогрева рабочей платформы, это улучшает показатели качества печати как PLA, так и особенно ABS филаментами. Кстати, использованием во многих дешевых 3D-принтерах этой функции и, соответственно, возможностью печати ABS пластиком, производители также привлекают покупателей. По 10-ти бальной шкале 4 и 4Х оценивают на 6 и 7 баллов соответственно.

2.5..3D-ручки – это приборы, позволяющие буквально рисовать в воздухе расплавленным пластиком, который застывает при контакте с воздухом. Кроме того, с помощью 3D-ручки можно поправлять изъяны, которые возможны при использовании 3D-принтера.
Одной из самых популярных моделей является американская 3D-ручка 3Doodler . Ее вес всего 150 грамм, а размер – 4,5 на 17,5 см. Толщина расходной пластиковой нити 3 мм. Присутствуют кнопки контроля скорости печати, подачи пластика, а также клавиша для остановки печати. При работе с устройством температура кончика ручки достигает 270 градусов, что заставляет стержень плавиться. Материал моментально застывает при контакте с воздухом, что позволяет создавать фигуры любой формы.


Довольно сильный конкурент 3Doodler - это 3D-ручка 3DYAYA китайского происхождения. Она имеет более тонкий расходный стержень – при печати используется пластиковая нить толщиной 1,75 мм. Такая ручка также, как и 3Doodler , имеет кнопки подачи пластика, немедленной остановки печати и управления скоростью. 3D-ручка 3DYAYA имеет запатентованную систему охлаждения.

3D-ручка RainSun 3D pen имеет практически одинаковые габариты с 3Doodler и 3DYAYA, но корпус более безопасен, так как кнопка контроля подачи пластика находится значительно выше сопла-экструдера, что исключает возможность ожога. Охлаждение выполняется при помощи вентилятора, скорость вращения которого зависит от интенсивности нагрева. Минус этой ручки - невозможность выбора температуры нагрева пластика, поэтому в ней можно использовать только ABS-пластик.

3D-ручка Lix – самая компактная из существующих моделей, ее диаметр составляет всего 1,40 см, а длина – 16 см. Толщина расходного стержня составляет 1,75 мм. Одним из преимуществ этой ручки является питание через USB, что позволяет заряжать ее от компьютера или ноутбука. Ручка такого размера очень удобна, но обладает одним очевидным минусом – после печати 15-20 сантиметровой линии придется вставлять новый расходный стержень.

Относительно новая модель - 3D-ручка от компании MyRiwell. Эта ручка имеет ряд преимуществ по сравнению со своими предшественниками. Сменное сопло позволяет изменять толщину линии от 0,4 до 0,7 мм, а блок питания с предохранителем защитит ручку от поломок, связанных с перепадами напряжения. Кроме того, ручка MyRiwell перестает нагреваться, если не используется в течение 7 минут. Также имеется функция регулировки температуры нагрева пластика.

К сожалению, в сети пока недостаточно отзывов реальных пользователей персональных 3D-принтеров, позволяющих в полной мере объективно оценить их возможности. На нынешнем этапе приходится принимать решение о покупке исходя из заявленных производителями свойств и характеристик, опубликованных результатов немногочисленных практических экспериментов, проводимых инициативными экспертами. По мере сбора информации этот обзор будет дополняться и корректироваться, чтобы у заинтересованных потребителей было больше информации для принятия решения. Одно бесспорно - 3D технологии стремительно развиваются и внедряются в наш быт, упрощая его и добавляя в него разнообразия.

Некоторые предприниматели махнули рукой на появление нового оборудования и его внедрение в производство. В то время как другие, более предприимчивые бизнесмены, уже давно используют его в своей деятельности. Что такое 3D принтеры и их применение в быту и бизнесе можно узнать, ознакомившись с этой статьей.
Желание быстро создавать предметы уже не раз описано в фантастических рассказах и кинокартинах. Волшебные приборы, которые бы делали это, намеревались создать многие ученые. Первые удачные попытки были сделаны в 80-х годах прошлого века.
Стереолитограф – именно так назывался прибор, запатентованный Чарльзом Халлом в 1986 году. Благодаря его появлению и были созданы первые 3D-принтеры. Если сначала некоторые сомневались в его функциональности, то сегодня спорить с этим не удастся никому.
Быстрое прототипирование применяется во всех сферах жизни: производство, архитектура, мода, образование и даже медицина. Вы удивитесь, но с помощью огромных 3D-принтеров в Китае создают даже жилые дома!
3D принтер применение которого может быть полезным в любых сферах жизни человека, сегодня доступен каждому желающему. Их используют владельцы коммерческих организаций и люди, создающие 3D-фигуры прямо у себя дома.
Этому способствует массовое распространение и значительное снижение цены на такую технику. Сегодня приобрести ее достаточно просто, если вы готовы заплатить за товар от 400 до 10 тысяч долларов.

Принципы работы 3D-принтера или как создать предмет за полчаса

Как можно быстро напечатать предмет и какой материал понадобится для этого? Многим известно, что область применения 3D принтеров не просто широка, а безгранична. Поэтому модели в 3D-формате могут быть напечатаны из любого материала.

Сегодня вам могут предложить печатать фигуры из:

  1. пластика;
  2. нейлона;
  3. дерева;
  4. металла;

Каким образом осуществляется печать интересует многих. На самом деле все обстоит достаточно просто: расходный материал, загружающийся в принтер накладывается слой за слоем, моделируя нужный объект. Понятное дело, что вам понадобится исходный файл, который вы будете печатать.
Чаще всего для этих целей используются файлы формата , которые доступны всем желающим. Так, любой рисунок в 3D-формате может появиться у вас уже через полчаса.

Что можно создать с помощью 3D-принтеров?

3D принтер применение в бизнесе которого стало очень широко распространенным явлением, может приносить хороший доход. Эффективность всех направлений предпринимательской деятельности, связанные с производством, может быть повышена благодаря использованию таких новинок техники.
Что можно напечатать с помощью современных 3D-принтеров?

Необычные сферы применения 3D-принтеров

Многих порадовало не только появление 3D-принтеров, но и . Они считывают данные о реальных объектах и создают цифровые файлы, с помощью которых осуществляется печать. Благодаря этому, каждый человек может заказать или напечатать 3D-фигурку, в точности повторяющую черты любого человека, животного или птицы.
Применение 3D принтера в стоматологии является очень удобным механизмом создания имплантатов и протезов. Их индивидуальное изготовление занимало очень много времени и не всегда модель имела соответствие, обеспечиваемое чудо-принтером. Причем стоят такие протезы в несколько раз дешевле.

Новый 3D принтер применение в медицине которого практикуется во всех развитых странах, позволяет вывести лечение некоторых болезней на качественно новый уровень.
К примеру, мальчику из Америки понадобился протез руки. Доктора предложили воспользоваться высококачественным изделием, выполненным под заказ. Стоимость его превышала несколько тысяч долларов. Но смелые родители не отчаялись. Отказавшись от предложения, они напечатали 3D-модель руки на принтере.
Пройдет несколько лет и ученые создадут технологии, спасающие человеческие жизни. Напечатанная щитовидная железа, кость или даже череп, смогут решить проблемы имплантации навсегда. Как видим, приложенные усилия исследователей стоили того. А пока мы читали эту статью продвинутые модельеры напечатали кроссовки и платья, созданные по собственным рисункам.

Видео о применении 3D принтера

О том как творчески можно починить любую вещь:

И о тех вещах, которые могут пригодиться для дома:

Во второй половине XVII века человечество изобрело паровой двигатель, подтолкнувший мир к первой промышленной революции. Вторая промышленная революция, связанная с изобретением двигателя внутреннего сгорания и распространением электричества, длится до сих пор и явно переживает период упадка. Ее технологии уже выработали свой потенциал и ждут, когда на смену им придет нечто другое, нечто более совершенное. Что это может быть? Существует мнение, что именно технологии 3D-печати смогут придать развитию человечества новый импульс.

Это сейчас возможности 3Д-принтеров вызывают не более чем любопытство сродни тому, что мы обычно испытываем в зоопарке, глядя на неведомую зверушку, однако в долгосрочной перспективе (20-30 лет) их потенциал поистине огромен. Перечень сфер, в которых задействованы технологии 3Д-печати, довольно широк и затрагивает многие аспекты жизнедеятельности человека.

Быстрое создание прототипов

Если раньше трехмерное моделирование представляло собой исключительно трудоемкий процесс, то сегодня любой, даже самый простой настольный 3D-принтер способен напечатать трехмерную пластиковую модель с разрешением в 100 микрон. Роль человеческого фактора при этом сводится к минимуму, а изготовленный предмет будет в точности соответствовать своей компьютерной модели. Реальные прототипы изделий уже сегодня позволяют компаниям исследовать рынок, а простота процесса дает возможность дизайнерам быстро вносить в концепты необходимые изменения.

Печать сложных объектов

Даже сейчас можно навскидку назвать несколько сфер, в которых 3D-принтеры успешно используются для производства сложных деталей:

  • Индивидуальная ортодонтия – в компании Align Technology уже давно используют метод стереолитографии для изготовления индивидуальных зубных скоб для пациентов. Скобы изготавливаются из безвредного полимера на основе 3D-сканов ротовой полости.
  • Индивидуальные слуховые аппараты – компания Siemens производит слуховые устройства на основе отсканированных ушных раковин, которые идеально подходят пользователю.
  • Изготовление деталей самолетов – при создании системы контроля окружающей среды для истребителя F-18 используются трубки, напечатанные при помощи 3Д-принтера.


3D-печать в медицине

В будущем возможности 3D-принтера в медицине не будут ограничиваться лишь созданием индивидуализированных протезов. Хирурги, занимающиеся пересадкой органов, мечтают о том, что однажды смогут получать требуемые органы по первому требованию. И для этого у них есть все основания, поскольку первый биопринтер уже создан и исправно функционирует.

Стоит он порядка 200 тысяч долларов, а над его разработкой трудились сотрудники компании Organovo, специализирующейся на регенеративной медицине, и инженеры машиностроительной фирмы Invetech. Первый в мире биопринтер использует ту же самую технологию, что и обычные 3Д-принтеры, однако вместо капелек полимера распыляет крошечные кластеры клеток, которые впоследствии как бы «сплавляются» в единую структуру.

Безусловно, индустрия 3D-печати органов только зарождается, однако первые реальные результаты имеются уже сегодня. Так в 2006 году, американские ученые из Северной Каролины успешно пересадили семерым пациентам искусственные мочевые пузыри, которые нормально функционируют до сих пор. В общем, не удивляйтесь, если через 10 лет биопринтер сможет напечатать из стволовых клеток печень, почку или даже сердце.

«Пищевые» 3D-принтеры

Ученые Корнелльского университета (США) разработали новую технологию печати гидроколлоидами, которая в перспективе позволит печатать овощи, хлеб, мясо, молочные продукты и вообще все, что может пожелать душа гурмана. Правда речь идет пока об имитации блюд при помощи смешивания желатина и пищевой добавки E415 (ксантановой камеди), однако существуют модели принтеров, которые, к примеру, способны печатать настоящим шоколадом. Некоторые ученые-футурологи утверждают, что через 15-20 лет в магазинах будут продаваться лишь картриджи с пищевыми добавками, а все продукты будут печататься дома.

Самовоспроизводящиеся принтеры

В 2006 году был создан 3Д-принтер возможности которого выходят за рамки обычных настольных устройств для печати трехмерных объектов. Суть в том, что этот принтер смог напечатать более половины собственных деталей, ранее изготовленных другим способом. Проект получил название RepRap и быстро стал массовым движением, направленным на создание полноценного самокопирующегося устройства. Сегодня устройства в рамках проекта успешно печатают работающие электрические цепи, а список исходных материалов пополнился керамикой, сплавами висмута и индия, глиной, мраморной пылью, тальком.

Безграничные возможности

Многие ученые предрекают наступление эры 3D-печати, которая приведет к полной децентрализации общества. Наряду с развитием солнечной энергетики и тотальной информатизацией, трехмерная печать может стать толчком к развитию автономности домов, в рамках которой единственная потребность в связи с внешним миром будет заключаться в необходимости покупки сырья для 3D-принтеров. В результате логистика в ее нынешнем виде исчезнет, а ее место займет нечто совершенно другое. Хорошо это или плохо, сказать трудно, однако тот факт, что наш мир в скором времени изменится до неузнаваемости, уже не вызывает никаких сомнений.

Для людей, которые не видели самого процесса работы 3D принтера, сама возможность объёмной печати представляется чем-то фантастическим, наподобие телепортации.

На самом же деле эта технология носит скорее эволюционный характер. По сути отличий от работы обычного принтера не так уж и много.

Вместо тонера, который распыляется на бумагу, используются другие материалы, например быстроотвердевающие смолы, что позволяет создать практически любой объект.

Ограничений по форме и сложности объекта действительно не существует, это может быть детская игрушка, элементы для протеза руки, одежда, даже действующее огнестрельное оружие можно просто напечатать.

3D-принтеры: технологии будущего уже сегодня

Типы 3D принтеров

На данном этапе развития 3D печать только начинает использоваться повсеместно, хотя сам принцип работы был сформулирован ещё в 1986 году. С тех пор кардинально ничего не изменилось – в основу положен всё тот же принцип послойного создания модели. Единственное что изменялось это используемый материал и способ его твердения. В некоторых моделях принтеров использовались металлический порошок и пластиковая пудра, а для их отвердения применялся лазер.

Широкое применение эти материалы нашли при ремонте изношенных деталей, например лопастей турбин. Кроме этого существуют принтеры, которые используют светочувствительный материал (фотополимер). В некоторой степени они работают как обычные 2D принтеры – наносят на поверхность слой жидкого материала, затем он твердеет при облучении (обычно ультрафиолетом). Свою нишу нашли устройства, в которых за один проход печатающей головки наносится несколько разных материалов.

Но всё же самым распространённым типом остаются принтеры, работающие с термопластиком. Принцип работы напоминает обычный клеевый пистолет, управляемый компьютером. Его отверждение происходит при снижении температуры. Возможна работа с разноцветными термопластиками.

3D-принтеры. Мозговой штурм.

Сфера применения 3D принтеров

С массовым распространением 3D печати появилось множество, зачастую просто фантастических изделий. Среди самых невероятных вариантов использования этой технологии следует отметить следующие:

  1. Исследователи университета Принстона смогли соединить живую и неживую материю при печати человеческого уха. Откровенно говоря, в результате эксперимента получился не полноценный орган, а скорее протез из биомассы, своего рода антенна для улавливания радиоволн. В материале в большом количестве содержатся стволовые клетки. В США также скоро начнутся клинические испытания по лечению межпозвонковых дисков с помощью напечатанных протезов. Появились первопроходцы и в протезировании конечностей, причем для достижения результата достаточно оказалось просто скачать готовые модели для 3D принтера, а затем собрать протез;
  2. Возможность «печатать» еду. На данный момент успешно подобран состав и напечатаны хрящи и кости, теперь очередь за печатью мяса и других продуктов питания;
  3. Огнестрельное оружие. Создан рабочий образец пистолета, он выдерживает не более одного выстрела. С использованием более прочного материала была напечатана винтовка, которая выдержала 15 выстрелов без разрушения, то есть характеристики такого оружия практически не уступают своим металлическим «собратьям»;
  4. Печать зданий. На 2014 год запланирован эксперимент по использованию 3D принтера в строительстве коттеджа. Возможно, это совершит переворот в строительной отрасли. Но в строительной отрасли уже получены первые результаты. Брайан Петерс, основатель «Лаборатории дизайна» в Амстердаме сумел подобрать такой состав керамической смеси для принтера, при котором на изготовление одного кирпича уходит не более 20 минут. Сейчас он работает над изготовлением установки для полноценной печати ;
  5. Астрономами НАСА напечатанной лунной базы. Идея состоит в том, чтобы все элементы конструкции получить прямо на месте строительства из лунного грунта;
  6. В машиностроении также взяли на вооружение перспективную технологию. Например, в авиастроении, при проектировании реактивных двигателей некоторые элементы могут быть напечатаны (по этой технологии уже изготавливаются инжекторы авиадвигателей);
  7. В производстве электроники проектирование и объёмная печать элементов с оптимальной формой и характеристиками уже становится реальностью. Незаменимой 3D печать стала при производстве микросхем малого размера и сложной формы. В качестве эксперимента исследователи Гарварда и университета штата Иллинойс напечатали настолько малого размера, что их можно использовать для питания роботов размером не больше комара.

Перспективы 3D печати

Ряд преимуществ, в том числе и возможности создания объекта целиком, практически безотходному производству, возможности создания сложный внутренних структур определяет будущее этой технологии. Нет сомнений, что в ближайшие годы технология объёмной печати приобретёт широкое распространение.

3D печать уверенно развивается на глобальном уровне и предлагает возможности, с которыми традиционное производство конкурировать просто не в состоянии. На данном этапе развития основное направление использования 3D принтеров – быстрое и точное прототипирование. Единственным сдерживающим фактором является отсутствие составов, близких по свойствам металлу, цементобетону, ткани, но это лишь вопрос времени.

3D Мир, в котором нет незаменимых вещей?

Возможно, в ближайшем будущем это станет реальностью. Фундаментальным изменениям может подвергнуться и экономическая система. Ведь больше не будет нужды покупать готовые товары, достаточно заплатить за сырьё и файлы , остальное сделает 3D принтер. К тому же при таком сценарии развития событий изделие получится уникальным, идеально подходящим владельцу.

Будущее покажет , что именно из перечисленного станет реальностью, но одно можно утверждать с уверенностью – 3D печать способна кардинально изменить мир.

В век микро- и нанотехнологий мало кого удивишь очередным устройством, обладающим способностями на грани магических. И, тем не менее, даже в наше время совершаются прорывы в научных технологиях, способные не просто поразить воображение, но и перевернуть представление о возможном.

Сегодня мы расскажем о технологии, еще в недалеком прошлом казавшейся невероятной — возможности воссоздавать сложнейшие объемные объекты из практически любых материалов. «Полевые синтезаторы» и «репликаторы» мира научной фантастики постепенно перекочевали в нашу с вами реальность, и развиваются весьма быстрыми темпами, осваивая уже не только научные лаборатории, но и домашний интерьер. 3D-печать и 3D-принтеры — наиболее активно обсуждаемая в новостях тема ушедшего 2012 года. И интерес к этому изобретению в массах лишь возрастает, поскольку возможности 3D-печати день ото дня лишь совершенствуются.

Главный секрет 3D принтера

Говоря простым языком, 3D-принтер — это специализированный высокоточный станок с ЧПУ (числовым программным управлением). И как утверждают инженеры, в самом изготовлении предметов с помощью станочного оборудования нет ничего необычного, автоматические технологии изготовления предметов давно и успешно используются в массовом производстве примерно с середины прошлого столетия. Фантастический же ореол вокруг 3D-печати возник, по всей видимости, потому, что применяемые для нее устройства в процессе изготовления предмета, не стачивают по старинке «лишние» части заготовок, а воссоздают необходимый предмет «с нуля». В основе работы 3D-принтера лежит технология аддитивной печати, позволяющая получать нужные объекты методом наращивания слоев рабочего материала. Современный 3D-принтер — результат эволюции устройства под названием стереолитограф, разработанного Чарльзом Халлом в 1984-м году.

Пока 3D-принтеры не используются в серийном производстве деталей и предметов, поскольку безнадежно проигрывают любому из станков с ЧПУ в ситуации, когда важнее не уникальность, а скорость изготовления и низкая цена конечного продукта. Ведь традиционные методы производства разрабатывались, совершенствовались и развивались в условиях необходимости получения дешевой «поточной» продукции.

Как работает 3D принтер

Устройство 3D-принтера аналогично устройству любого обычного принтера, печатающего изображения и тексты: у него также имеются печатающая головка и картридж с рабочим материалом, заменяющим чернила струйной и тонер лазерной печати. Некоторые из 3D-принтеров формируют объекты из особого порошка на основе крахмала или гипса, другие используют расплавленный пластик или светоотверждаемый жидкий фотополимер в качестве рабочего материала. Есть и такие, которые «спекают» с помощью электронного или лазерного луча в готовое изделие керамический или металлический порошок.


Независимо от используемой рабочей технологии общий принцип работы 3D-принтеров один. Объект воссоздается в специально отведенном для него пространстве (камере принтера) по существующей компьютерной 3D-модели послойно — с помощью «печатающей» головки, движением которой управляет программа. Из тонких (в десятые и сотые доли микрона) слоев рабочего материала. Закончив построение очередного слоя, головка перемещается на следующий до тех пор, пока объект не приобретет законченную форму.

Возможности 3D печати

3D принтеры могут воссоздавать сложнейшие объекты различной формы, размеров и цвета, используя весьма широкий спектр порошковых материалов — более 100 наименований, и это, разумеется, не предел. Крахмал, гипс, песок, воск, стекло, керамика, полистирол и другие полимеры, резина, нейлон, нержавеющая сталь, цветные (титан, алюминий, кобальт, хром) и благородные (серебро, золото) металлы и их сплавы — с каждым днем возможности 3D-печати только расширяются. Уже сегодня ученые медики экспериментируют с различными биополимерами, способными вывести мировую медицину на новый, поистине невообразимый, уровень.

Технология 3D-печати в настоящее время используется для изготовления уникальных ювелирных изделий, моделирования обуви, в промышленном дизайне, архитектуре и строительстве, в таких областях, как автомобильная, аэрокосмическая и медицинская промышленности, в сфере образования, информационных систем, гражданского строительства и многих других. Сферы применения 3D-печати продолжают расширяться, находится множество неожиданных и оригинальных решений. Одним из возможных направлений развития 3D-технологии может стать ее бытовое использование — например, для быстрого создания некоторых предметов и деталей домашнего быта.

Примеры успешного применения технологии

Платформа 3D-печати более 20 лет находилась в стадии опытного образца, однако стоимость оборудования в последние два-три года уменьшилась в десятки раз, а затраты на создание оригинальных ювелирных изделий резко упали. В ювелирном деле 3D-технологии позволяют создавать украшения гораздо быстрее, чем при использовании традиционных методов производства. А вносить поправки на стадии проектирования — и того проще, теперь для этого достаточно нескольких щелчков мыши.

Сегодня 3D-принтеры находят достойное применение и в науке. Мы многого не знаем о том, как двигались давно вымершие животные, например, динозавры. Как ни странно это звучит, но за последние полтора века в палеонтологии не произошло сколь либо значительных изменений. Применение 3D-печати в этой области знаний уже позволяет не только воссоздавать точнейшие и полноразмерные копии когда-то населявших Землю существ для музейных выставок, но и успешно тестировать механику движений всех этих вымерших видов.


3D-печать пришла и в мир моды, последний пример такого сотрудничества — Voltage collection, которая в конце января 2013 года демонстрировалась на Парижской Неделе моды. Для этой коллекции дизайнером Ирис Ван Херпен (Van Herpen, Koerner and Materialise) было создано несколько платьев потрясающей сложности из нового экспериментального материала. Точность создания кружевной бесшовной структуры невозможно было реализовать иначе, как посредством 3D-печати. Расширение возможностей работы 3D-принтеров с такими пластичными материалами, как полиуретан и резина, позволяют экспериментировать и с другими современными материалами, что неизбежно отражается на тенденциях моды.

Напечатанный на 3D-принтере образец огнестрельного оружия, армейская винтовка AR-15, было успешно протестировано на работоспособность. Создавший и испытавший действующий образец винтовки, разработчик тут же поделился файлами цифровых 3D-деталей оружия с мировым сообществом, выложив их в открытом доступе на одном из сайтов. Этот акт «пацифизма» и то, что подобное оружие невозможно обнаружить металлодетектором, спровоцировал правительство многих стран закрепить запрет на воспроизводство огнестрельного оружия на 3D-принтерах законодательно.

Японцы также нашли весьма оригинальное применение 3D-технологиям, открыв первый в мире 3D-фотостенд. Пройдя быстрое и необременительное 3D-сканирование на стенде, посетитель получает возможность заказать 3D-печать собственной уменьшенной копии или же собственного бюста — чем не оригинальный подарок себе любимому. Взяла на вооружение 3D-технологии и XXX-индустрия, наладив выпуск заказных персонализированных кукол и прочих игрушек из силикона.


Приятным сюрпризом стал представленный в 2012 году фирмой Essential Dynamics 3D-принтер, способный воссоздавать объекты любой сложности из необычных материалов — шоколада и других пищевых ингредиентов. В самом ближайшем будущем предполагается массовый спрос не только на различные съедобные предметы, но и на подобные принтеры.

Потенциал и перспективы использования 3D печати

Современные 3D-принтеры уже не отстают по своим полиграфическим возможностям от принтеров обычных. Так, применение систем из пяти печатающих головок с материалами стандартных цветов позволяет получать полноцветные 3D-объекты с разрешением до 600 dpi (точек на дюйм).

Огромный потенциал 3D-печати замечательно иллюстрирует изготовленный по этой технологии музыкальный инструмент. Первая скрипка, распечатанная на 3D-принтере, была опробована в прямом эфире CNN пятнадцатилетней студенткой, с успехом сыгравшей на ней. Это необычное выступление доказало многим сомневающимся, что с помощью современных технологий 3D-печати можно воссоздать практически любой известный предмет — причем, с сохранением присущих ему свойств и характеристик.

Изобретатель Kai Parthy создал волокно для популярного 3D-принтера RepRap, позволяющее применять технологию для печати древесины. Волокно под кодовым названием LAYWOO-D3 является композитом древесины и специального полимера. Переработанные отходы деревообрабатывающей промышленности и недорогой безвредный пластик стали источником для поистине революционного материала, способного значительно сократить в будущем вырубку лесов — при условии, что технология получит широкое распространение.

Не прекращаются попытки создать 3D-принтеры, способные воспроизводить структурные элементы зданий из бетона и пеноматериалов. Проводятся исследования возможностей быстрой (до 20-ти часов) «печати» жилых сооружений со встроенными сантехническими и электрическими коммуникациями за один непрерывный цикл с использованием больших 3D-принтеров. Рабочие образцы строительных 3D-принтеров уже печатают до 3-х метров сооружений из строительного материала в час, и это не предел. Технологию 3D-печати зданий планируется использовать для автоматизированного возведения мест обитания человека вне Земли. Первые такие внеземные сооружения планируется построить на Луне уже в 2013-2014 годах, причем для «печати» лунных сооружений планируется использовать лишь 10% доставленного с Земли материала, 90% материала составит лунный грунт.

Американское космическое агентство NASA профинансировало грантом в размере 125000 долларов инженера Анджана Контрактора (Anjan Contractor), выделив эти деньги на создание 3D-принтера, который будет способен «печатать» еду для астронавтов в условиях космоса. Смешивая пищевые ингредиенты из картриджей, устройство сможет обеспечить разнообразие рациона космических путешественников во время длительных экспедиций. Первым блюдом, напечатанным на 3D-принтере, станет пицца — благодаря легкодоступным ингредиентам и простой структуре. Программное обеспечение этого принтера будет изначально с открытым исходным кодом, что позволит совершенствовать энтузиастам устройство и создаст возможность обмена рецептами (распечатками) блюд.

Применение «двуфотонной литографии» позволило ученым технологического университета Виенны (The Vienna University of Technology) совершить серьезный прорыв в невероятной детализации трехмерных объектов, печатаемых с нано-точностью. Чуть позже, в 2012 году, группа ученых из университета Глазго в Великобритании на практике доказала возможность использования технологий 3D-печати для создания химических соединений, что приоткрывает нам дверь в мир, в котором можно будет создавать вещи молекула за молекулой.


Исследователями из Вашингтонского государственного университета найден способ «печатать» кости человеческого организма при помощи 3D-принтера. В основе инновации — открытие вещества, по структуре и свойствам близкого к составу костной ткани. Это изобретение может быть использовано как для полного создания протезов костей, так и для поддержания сломанных участков в течение необходимого времени. Существует проект немецких ученых под названием BioRap, нацеленный на создание 3D-принтеров для распечатки различных человеческих органов и кровеносных сосудов. Считается, в ближайшие несколько лет эти технологии станут широко доступными для медработников, в корне решая проблему с дефицитом и отторжением донорских органов.


Организацией Thiel Foundation был анонсирован грант на создание инновационной технологии 3D-печати органических белковых соединений. Последние наработки в области создания живых клеток и тканей планируется объединить с наработками исследователей из Breakout Labs для получения съедобного прототипа мяса, способного стать в недалеком будущем весьма перспективным и к тому же гуманным источником животного белка для мясоедов всего мира.

3D печать — будущее сегодня

Серийные громоздкие 3D-принтеры, совсем недавно стоившие десятки тысяч долларов и обладавшие минимумом возможностей, быстро стали раритетом, их сменили более функциональные, компактные и несравнимо более дешевые модели стоимостью около 1000 долларов США.


На специализированных сайтах, таких как Thingiverse, уже сейчас можно найти в свободном для скачивания доступе десятки тысяч цифровых 3D-моделей различных объектов — порой, невероятных и удивительных. Но, несмотря на это, сфера «домашнего» применения 3D-печати пока ограничивается, в основном, воспроизводством незамысловатых безделушек и малопрактичных игрушек.


На данный момент уже существует огромное количество материалов, которыми способны печатать 3D-принтеры. Причем готовые изделия по физическим свойствам полностью соответствуют оригинальным материалам — керамике, резине, пластику, металлу, стеклу и т.д. Не за горами печать трехмерных объектов с переменными характеристиками материалов, например, с изменяющейся прозрачностью.

Появление 3D-технологий в массовом доступе окончательно ставит под удар копирайт, вызывая немало дискуссий о неизбежности пересмотра границ и ограничений авторского права. Не за горами тот день, когда в подтверждение шутке о недавнем закрытии крупнейшего российского торрент-трекера, можно будет скачать статую Церетели из интернета.

Бре Петтис (Bre Pettis), 40-летний отец-основатель компании MakerBot Industries, производящей самые популярные сегодня домашние 3D-принтеры, говорит о неизбежности дальнейшего совершенствования 3D-технологий, которые, надо заметить, все еще воспринимаются большинством населения как элемент научной фантастики. Возможно, этот процесс займет некоторое время, но ожидаемые результаты того стоят.

Одной из последних новостей из мира 3D-печати стало сообщение о появлении принтера, который способен напечатать сам себя. Печать не просто отдельных деталей, а полноценных устройств с электронной начинкой и всеми необходимыми комплектующими — следующий гигантский шаг в освоении 3D-технологий будущего.

А между тем не так давно первый 3D-принтер был собран детьми, учениками школы The School in Geldermalsen, работавшими над сложными проектами. Вот оно, удивительное будущее — сегодня, и уже очень близко к нам!



© 2024 rupeek.ru -- Психология и развитие. Начальная школа. Старшие классы