Тепловой коэффициент сопротивления меди. Удельное сопротивление и другие свойства меди

Главная / Физическое воспитание

Основными характеристиками проводниковых материалов являются:

  1. Теплопроводность;
  2. Контактная разность потенциалов и термоэлектродвижущая сила;
  3. Временное сопротивление разрыву и относительное удлинение при растяжении.

ρ - величина, характеризующая способность материала оказывать сопротивление электрическому току. Удельное сопротивление выражается формулой:

Для длинных проводников (проводов, шнуров, жил кабелей, шин) длину проводника l обычно выражают в метрах, площадь поперечного сечения S - в мм², сопротивление проводника r - в Ом, тогда размерность удельного сопротивления

Данные удельных сопротивлений различных металлических проводников приведены в статье "Электрическое сопротивление и проводимость ".

α - величина, характеризующая изменение сопротивления проводника в зависимости от температуры.
Средняя величина температурного коэффициента сопротивления в интервале температур t 2 ° - t 1 ° может быть найдена по формуле:

Данные температурных коэффициентов сопротивления различных проводниковых материалов приведены ниже в таблице.

Значение температурных коэффициентов сопротивления металлов

Теплопроводность

λ - величина, характеризующая количество тепла, проходящее в единицу времени через слой вещества. Размерность теплопроводности

Теплопроводность имеет большое значение при тепловых расчетах машин, аппаратов, кабелей и других электротехнических устройств.

Значение теплопроводности λ для некоторых материалов

Серебро
Медь
Алюминий
Латунь
Железо, сталь
Бронза
Бетон
Кирпич
Стекло
Асбест
Дерево
Пробка
350 - 360
340
180 - 200
90 - 100
40 - 50
30 - 40
0,7 - 1,2
0,5 - 1,2
0,6 - 0,9
0,13 - 0,18
0,1 - 0,15
0,04 - 0,08

Из приведенных данных видно, что наибольшей теплопроводностью обладают металлы. У неметаллических материалов теплопроводность значительно ниже. Она достигает особенно низких значений у пористых материалов, которые применяю специально для тепловой изоляции. Согласно электронной теории высокая теплопроводность металлов обусловлена теми же электронами проводимости, что и электропроводность.

Контактная разность потенциалов и термоэлектродвижущая сила

Как было указано в статье "Металлические проводники ", положительные ионы металла расположены в узлах кристаллической решетки, образующей как бы ее каркас. Свободные электроны заполняют решетку наподобие газа, который называют иногда "электронным газом". Давление электронного газа в металле пропорционально абсолютной температуре и числу свободных электронов в единице объема, которое зависит от свойств металла. При соприкосновении двух разнородных металлов в месте соприкосновения происходит выравнивание давления электронного газа. В результате диффузии электронов металл, у которого число электронов уменьшается, заряжается положительно, а металл, у которого число электронов увеличивается, заряжается отрицательно. В месте контакта возникает разность потенциалов. Эта разность пропорциональна разности температур металлов и зависит от их вида. В замкнутой цепи возникает термоэлектрический ток. Электродвижущая сила (ЭДС), которая создает этот ток, называется термоэлектродвижущей силой (термо-ЭДС).

Явление контактной разности потенциалов применяется в технике для измерения температуры при помощи термопар. При измерении малых токов и напряжений в цепи в местах соединения различных металлов может возникнуть большая разность потенциалов, которая будет искажать результаты измерений. В этом случае необходимо подобрать материалы так, чтобы точность измерений была высокой.

Временное сопротивление разрыву и относительное удлинение при растяжении

При выборе проводов, помимо сечения, материала проводов, изоляции необходимо учитывать их механическую прочность. Особенно это касается проводов воздушных линий электропередач. Провода испытывают растяжение. Под действием силы, приложенной к материалу, последний удлиняется. Если обозначить первоначальную длину l 1 , а конечную длину l 2 , то разность l 1 - l 2 = Δl будет абсолютным удлинением .

Отношение

называется относительным удлинением .

Сила, производящая разрыв материала, называется разрушающей нагрузкой , а отношение этой нагрузки к площади поперечного сечения материала в момент разрушения называется временным сопротивлением на разрыв и обозначается

Данные временных сопротивлений на разрыв для различных материалов приведены ниже.

Значение предела прочности на разрыв для различных металлов

Концентрация свободных электронов n в металлическом проводнике при повышении температуры остается практически неизменной, но возрастает их средняя скорость теплового движения. Усиливаются и колебания узлов кристаллической решетки. Квант упругих колебаний среды принято называть фононом . Малые тепловые колебания кристаллической решетки можно рассматривать как совокупность фононов. С ростом температуры увеличиваются амплитуды тепловых колебаний атомов, т.е. увеличивается сечение сферического объема, который занимает колеблющийся атом.

Таким образом, с ростом температуры появляется все больше и больше препятствий на пути дрейфа электронов под действием электрического поля. Это приводит к тому, что уменьшается средняя длина свободного пробега электрона λ, уменьшается подвижность электронов и, как следствие, уменьшается удельная проводимость металлов и возрастает удельное сопротивление (рис.3.3). Изменение удельного сопротивления проводника при изменении его температуры на 3К, отнесенное к величине удельного сопротивления этого проводника при данной температуре, называют температурным коэффициентом удельного сопротивления TK ρ или . Температурный коэффициент удельного сопротивления измеряется в К -3 . Температурный коэффициент удельного сопротивления металлов положителен. Как следует из данного выше определения, дифференциальное выражение для TK ρ имеет вид:

(3.9)

Согласно выводам электронной теории металлов значения чистых металлов в твердом состоянии должны быть близки к температурному коэффициенту (ТK) расширения идеальных газов, т.е. 3: 273 = 0,0037. В действительности у большинства металлов ≈ 0,004 Повышенными значениями обладают некоторые металлы, в том числе ферромагнитные металлы - железо, никель и кобальт.

Отметим, что для каждой температуры имеется свое значение температурного коэффициента TK ρ . На практике для определенного интервала температур пользуются средним значением TK ρ или :

, (3.10)

где ρ3 и ρ2 - удельные сопротивления проводникового материала при температурах Т3 и Т2 соответственно (при этом Т2 >Т3); есть так называемый средний температурный коэффициент удельного сопротивления данного материала в диапазоне температур от Т3 до Т2 .

В этом случае при изменении температуры в узком диапазоне от Т3 до Т2 принимают кусочно-линейную аппроксимацию зависимости ρ(Т):

(3.11)

В справочниках по электротехническим материалам обычно приводят значения при 20 0 С.

Рис.3.1 Зависимость удельного сопротивления ρ металлических проводников от температуры Т . Скачок ρ (ветвь 5) соответствует температуре плавления Т ПЛ .


Рис.3.2. Зависимость удельного сопротивления меди от температуры. Скачок соответствует температуре плавления меди 1083 0 С.

Как следует из формулы (3.33), удельное сопротивление проводников зависит от температуры линейно (ветвь 4 на рис.3.3), за исключением низких температур и температур больших температуры плавления T >Т ПЛ .

При приближении температуры к 0 0 К у идеального металлического проводника удельное сопротивление ρ стремится к 0 (ветвь 3). У технически чистых проводников (с очень малым количеством примесей) на небольшом участке, составляющем несколько кельвинов, значение ρ перестает зависеть от температуры и становится постоянным (ветвь 2). Его называют “остаточным” удельным сопротивлением ρ ОСТ. Величина ρ ОСТ определяется только примесями. Чем чище металл, тем меньше ρ ОСТ .

Вблизи абсолютного нуля возможно и другая зависимость ρ от температуры, а именно, при некоторой температуре Т С удельное сопротивление ρ скачком падает практически до нуля (ветвь 3). Это состояние называют сверхпроводимостью, а проводники, обладающие этим свойством называют сверхпроводниками. Явление сверхпроводимости будет рассмотрено ниже в 3.3.

Пример 3. 6. Температурный коэффициент удельного сопротивления меди при комнатной температуре составляет 4,3·30-3 -3 К. Определить во сколько раз изменится длина свободного пробега электрона при нагревании медного проводника от 300 до 3000 К.

Решение. Длина свободного пробега электрона обратно пропорциональна удельному сопротивлению. Поэтому, во сколько раз увеличится при нагревании удельное сопротивление меди, во столько раз уменьшится и длина свободного пробега электрона. Удельное сопротивление меди увеличится в раза. Следовательно, длина свободного пробега электрона уменьшиться в 3 раза.

Изменение удельного сопротивления металлов при плавлении.

При переходе металлов из твердого состояния в жидкое у большинства из них наблюдается увеличение удельного сопротивления ρ , как это показано на рис.3.3 (ветвь5). В табл.3.2 приведены значения, показывающие относительное изменение удельного сопротивления различных металлов при плавлении. Удельное сопротивление увеличивается при плавлении у тех металлов (Hg, Au, Zn, Sn, Na), которые при плавлении увеличивают объем, т.е. уменьшают плотность. Однако некоторые металлы, например, галлий (Ga) и висмут (Bi) при плавлении уменьшают ρ соответственно в 0,58 и в 0,43 раза. У большинства металлов в расплавленном состоянии удельное сопротивление с ростом температуры увеличивается (ветвь 6 на рис.3.3), что связано с увеличением их объема и уменьшением плотности.

Таблица 3.2. Относительное изменение удельного сопротивления различных металлов при плавлении.

Изменение удельного сопротивления металлов при деформациях .

Изменение ρ при упругих деформациях металлических проводников объясняется изменением амплитуды колебаний узлов кристаллической решетки металла. При растяжении эти амплитуды увеличиваются, при сжатии - уменьшаются. Увеличение амплитуды колебаний узлов приводит к уменьшению подвижности носителей зарядов и, как следствие, к возрастанию ρ.

Уменьшение амплитуды колебаний, наоборот, приводит к уменьшению ρ. Однако, даже значительная пластическая деформация, как правило, повышает удельное сопротивление металлов вследствие искажения кристаллической решетки не более чем на 4-6%. Исключением является вольфрам (W), ρ которого возрастает на десятки процентов при значительном обжатии. В связи со сказанным выше, можно использовать пластическую деформацию и возникающий при этом наклеп для повышения прочности проводниковых материалов, не ухудшая их электрических свойств. При рекристаллизации удельное сопротивление может быть вновь снижено до первоначального значения.

Удельное сопротивление сплавов.

Как уже указывалось, примеси нарушают правильную структуру металлов, что ведут к увеличению их удельного сопротивления. На рис.3.3 приведена зависимость удельного сопротивления ρ и удельной проводимости γ меди от концентрации N различной примеси в долях процента. Подчеркнем, что любое легирование приводит к увеличению удельного электрического сопротивления легированного металла по сравнению с легируемым. Это касается и случаев, когда в легируемый металл добавляется металл с более низким ρ. Например, при легировании меди серебром ρ медно-серебряного сплава будет больше, чем ρ меди, несмотря на то, что ρ серебра меньше, чем ρ меди, как это видно из рис.3.3.

Рис.3.3. Зависимость удельного сопротивления ρ и удельной проводимости γ меди от содержания примесей.

Значительное возрастание ρ наблюдается при сплавлении двух металлов в том случае, если они образуют друг с другом твердый раствор , в котором атомы одного металла входят в кристаллическую решетку другого. Кривая ρ имеет максимум, соответствующий некоторому определенному соотношению между содержанием компонентов в сплаве. Такое изменение ρ от содержания компонентов сплава можно объяснить тем, что вследствие его более сложной структуры по сравнению с чистыми металлами сплав уже нельзя уподоблять классическому металлу.

Изменение удельной проводимости γ сплава в этом случае обусловливается не только изменением подвижности носителей, но в некоторых случаях и частичным возрастанием концентрации носителей при повышении температуры. Сплав, у которого уменьшение подвижности с ростом температуры компенсируется возрастанием концентрации носителей, будет иметь нулевой температурный коэффициент удельного сопротивления. В качестве примера на рис.3.4 показана зависимость удельного сопротивления сплава медь-никель от состава сплава.

Теплоемкость, теплопроводность и теплота плавления проводников .

Теплоемкость характеризует способность вещества поглощать теплоту Q при нагреве. Теплоемкостью С какого-либо физического тела называют величину, равную количеству тепловой энергии, поглощаемой этим телом при нагреве его на 3К без изменения его фазового состояния. Теплоемкость измеряют в Дж/К. Теплоемкость металлических материалов растет с повышением температуры. Поэтому величину теплоемкости С определяют при бесконечно малом изменении его состояния:

Рис.3.4. Зависимость удельного сопротивления сплавов медь-никель от состава (в процентах по массе).

Отношение теплоемкости С к массе тела m называют удельной теплоемкостью с :

Удельная теплоемкость измеряется в Дж/(кг?К). Значения удельной теплоемкости металлов приведены в табл. 3.3. Как видно из табл.3.3, тугоплавкие материалы характеризуются низкими значениями удельной теплоемкости. Так, например, у вольфрама (W) с =238, а у молибдена (Mo) с =264Дж/(кг?К). Легкоплавкие же материалы, напротив, характеризуются высоким значением удельной теплоемкости. Так, например, у алюминия (Al) с =922, а у магния (Mg) с =3040Дж/(кг?К). Медь имеет удельную теплоемкость с=385 Дж/(кг?К). У металлических сплавов удельная теплоемкость находится в пределах 300-2000 Дж/(кг?К). С - это важная характеристика металла .

Теплопроводностью называют перенос тепловой энергии Q в неравномерно нагретой среде в результате теплового движения и взаимодействия составляющих ее частиц. Перенос теплоты в любой среде или каком-либо теле происходит от более горячих частей к холодным. В результате переноса теплоты происходит выравнивание температуры среды или тела. В металлах перенос тепловой энергии осуществляется электронами проводимости. Количество свободных электронов в единице объема металла весьма велико. Поэтому, как правило, теплопроводность металлов намного больше, чем теплопроводность диэлектриков. Чем меньше примесей содержат металлы, тем выше их теплопроводность. С увеличением примесей их теплопроводность уменьшается.

Как известно, процесс переноса теплоты описывается законом Фурье :

. (3.14)

Здесь - плотность теплового потока, т. е. количество тепла, проходящее вдоль координаты x через единицу площади поперечного сечения за единицу времени, Дж/м 2 ?с,

Градиент температуры вдоль координаты x , К/м,

Коэффициент пропорциональности, называемый коэффициентом теплопроводности (ранее обозначался ), Вт/К?м.

Таким образом, термину теплопроводность соответствуют два понятия: это и процесс переноса тепла и коэффициент пропорциональности, характеризующий этот процесс.

Итак, свободные электроны в металле определяют и его электропроводность и теплопроводность. Чем выше электрическая проводимость γ металла, тем больше должна быть и его теплопроводность. При повышении температуры, когда подвижность электронов в металле и соответственно его удельная проводимость γ уменьшаются, отношение /γ теплопроводности металла к его удельной проводимости должно возрастать. Математически это выражается законом Видемана - Франца - Лоренца

/γ = L 0 T, (3.15)

где Т - термодинамическая температура, K,

L 0 - число Лоренца , равное

L 0 = . (3.16)

Подставляя в это выражение значения постоянной Больцмана k = Дж/К и заряда электрона e = 3,602?30 -39 Кл мы получаем L 0 = /

Закон Видемана - Франца - Лоренца выполняется в области температур, близких к нормальной или несколько повышенных для большинства металлов (исключение составляют марганец, бериллий). Согласно этому закону металлы, имеющие высокую электропроводность, обладают и высокой теплопроводностью.

Температура и теплота плавления . Теплота, поглощаемая твердым кристаллическим телом при переходе его из одной фазы в другую, называется теплотой фазового перехода. В частности, теплота, поглощаемая твердым кристаллическим телом при переходе его из твердого состояния в жидкое, называют теплотой плавления, а температура, при которой происходит плавление (при постоянном давлении), называют температурой плавления и обозначают Т ПЛ .. Количество тепла, которое нужно подвести к единице массы твердого кристаллического тела при температуре Т ПЛ для его перевода в жидкое состояние, называют удельной теплотой плавления r ПЛ и измеряют в МДж/кг или в кДж/кг. Величины удельной теплоты плавления для ряда металлов приведены в табл.3.3.

Таблица.3. 3. Удельная теплота плавления некоторых металлов.

В зависимости от температуры плавления различают тугоплавкие металлы, имеющие температуру плавления выше чем у железа, т.е. выше чем 3539 0 С и легкоплавкие с температурой плавления меньше чем 500 0 С. Диапазон температур от 500 0 С до 3539 0 С относится к средним значениям температур плавления.

Работа выхода электрона из металла.

Опытпоказывает, чтосвободные электроны при обычных температурах практически не покидают металл. Это связано с тем, что в поверхностном слое металла создается удерживающее электрическое поле. Это электрическое поле можно представить как потенциальный барьер, препятствующий выходу электронов из металла в окружающий вакуум.

Удерживающий потенциальный барьер создается за счет двух причин. Во-первых за счет сил притяжения со стороны избыточного положительного заряда, возникшего в металле в результате вылета из него электронов, и, во-вторых, за счет сил отталкивания со стороны ранее вылетевших электронов, образовавших вблизи поверхности металла электронное облако. Это электронное облако вместе с наружным слоем положительных ионов решетки образует двойной электрический слой, электрическое поле которого подобно полю плоского конденсатора. Толщина этого слоя равна нескольким межатомным расстояниям (30 -30 -30 -9 м).

Он не создает электрическое поле во внешнем пространстве, но создает потенциальный барьер, препятствующий выходу свободных электронов из металла. Работа выхода электрона из металла - это работа по преодолению потенциального барьера на границе металл-вакуум. Чтобы электрон мог вылететь из металла, он должен обладать определенной энергией, достаточной для того, чтобы преодолеть силы притяжения положительных зарядов, находящихся в металле, и силы отталкивания со стороны ранее вылетевших из металла электронов. Эта энергия обозначается буквой А и называется работой выхода электрона из металла. Работа выхода определяется по формуле:

Где e - заряд электрона, К;

Потенциал выхода, В.

Исходя из сказанного можно считать, что весь объем металла для электронов проводимости представляет потенциальную яму с плоским дном, глубина которой равна работе выхода А. Работа выхода выражается в электрон-вольтах (эВ). Значения работы выхода электронов для металлов приведены в табл.3.3.

Если сообщить электронам в металле энергию, достаточную для преодоления работы выхода, то часть электронов может покинуть металл. Это явление испускания металлом электронов называется электронной эмиссией . Для получения свободных электронов в электронных приборах имеется специальный металлический электрод - катод .

В зависимости от способа сообщения электронам катода энергии различают следующие виды электронной эмиссии:

- термоэлектронную , при которой дополнительная энергия сообщается электронам в результате нагрева катода;

- фотоэлектронную, при которой на поверхность катода воздействует электромапгнитное излучение;

- вторичную электронную , являющуюся результатом бомбардировки катода потоком электронов или ионов, двигающихся с большой скоростью;

- электростатическую , при которой сильное электрическое поле у поверхности катода создает силы, способствующие выходу электронов за его пределы.

Явление термоэлектронной эмиссии используется в электронных лампах, рентгеновских трубках, электронных микроскопах и т.д.

Термоэлектродвижущая сила (термо-ЭДС) .

При соприкосновении двух различных металлических проводников А и В (или полупроводников) (рис.3.5) между ними возникает контактная разность потенциалов , которая обусловлена разностью значений работы выхода электронов из различных металлов. Кроме того, концентрации электронов у разных металлов и сплавов также могут быть неодинаковым.

В этом случае электроны из металла А, где их концентрация больше, перейдут в тот металл В, где их концентрация меньше. В результате этого металл А будет иметь положительный заряд, а металл В - отрицательный заряд. В соответствии с электронной теорией металлов контактная разность потенциалов или ЭДС между проводниками А и В равна (рис.3.5):

(3.17)

где U A и U B — потенциалы соприкасающихся металлов; n A и n B - концентрации электронов в металлах А и В; k - постоянная Больцмана, e - заряд электрона, T - термодинамическая температура. Если концентрация электронов будет больше в металле В, то разность потенциалов изменит знак, так как логарифм числа, меньшего единицы, будет отрицательным. Контактную разность потенциалов можно измерить экспериментально. Впервые такие измерения были проведены в 3797 году итальянским физиком А. Вольта , который открыл это явление.

Рис.3.5. Образование контактной разности потенциалов или ЭДС между двумя разными проводниками А и В.

Само собой разумеется, что если два проводника А и В образуют замкнутую цепь (рис.3.6) и температуры обоих контактов одинаковы, то сумма разностей потенциалов или результирующая ЭДС равна нулю.

(3.18)

Если же один из контактов или как их называют «спаев» двух металлов имеет температуру Т3 , а другой - температуру Т2 . В этом случае между спаями возникает термо-ЭДС, равная

(3.19)

где - постоянный для данной пары проводников коэффициент термо-ЭДС, измеряемый в мкВ/К. Он зависит от абсолютного значения температур «горячего» и «холодного» контактов, а также от природы контактирующих материалов. Как видно из формулы (3.39) термо-ЭДС должна быть пропорциональна разности температур спаев.


Рис3.6. Схема термопары.

Зависимость термо-ЭДС от разности температур спаев может быть не всегда строго линейной. Поэтому коэффициент с Т необходимо корректировать в соответствии со значениями температур Т 3 и Т 2 .

Систему из двух изолированных друг от друга проволок из различных металлов или сплавов, спаянных в двух местах называют термопарой. Ее применяют для измерения температур. Температура одного спая (холодного) обычно бывает известна, а второй спай помещают в то место, температуру которого хотят измерить. К термопаре подключают измерительный прибор, например, милливольтметр mV , проградуированный в градусах Цельсия или в градусах Кельвина (рис.3.6).

В некоторых случаях к концам термопары подключают катушку управляющего реле или соленоида (рис. 3.7). При достижении определенной разности температур под действием термоЭДС по катушке реле Р начинает протекать ток, вызывающий срабатывание реле или открытие клапана с помощью соленоида. Примеры наиболее распространенных термопар, их температурные диапазоны и применения приведены ниже на стр. 325-330.


Рис.4

Рис.3.7. Схема подключения термопары к реле в схеме автоматического регулирования

Термо-ЭДС в одних случаях может быть полезной, а в других - вредной. Например, при измерении температуры термопарами, она полезна. В измерительных приборах и эталонных резисторах она вредна. Здесь стремятся применять материалы и сплавы с возможно меньшим коэффициентом термо-ЭДС относительно меди.

Пример 3.7. Термопара была отградуирована при температуре холодного спая T 0 =0 o C. Данные градуировки приведены в таблице 3.4

Таблица 3.4

Данные градуировки термопары

T , o C
Термо- ЭДС, мВ 0,0 0,33 0,65 3,44 2,33 3,25 4.23 5,24 6,27 7,34 8,47 9,63

С помощью этой термопары измерялась температура в печи. Температура холодного спая термопары при измерении равнялась 300 о С. Вольтметр при измерении показал напряжение 7,82 мВ. Пользуясь градуировочной таблицей определить температуру в печи.

Решение . Если температура холодного спая при измерении не соответствует условиям градуировки, то нужно применить закон промежуточных температур, который записывается так:

В скобках указаны температуры спаев. Найденной термо-ЭДС соответствует в соответствии с градуировочной таблицей температура в печи T = 900 о С.

Температурный коэффициент линейного расширения проводников (ТКЛР). Этот коэффициент, обозначаемый показывает относительное изменение линейных размеров проводника, и в частности его длины в зависимости от температуры:

Он измеряется в К -3 . На рис.3.8 приведены удлинения стержней длиной 3м, выполненных из различных материалов, при увеличении температуры,


Рис.3.8. Зависимость удлинения стержня длиной 1м от температуры материала.

Следует иметь в виду, что если резистор выполнен из провода, то при его нагревании длина провода и его радиус увеличиваются пропорционально его температуре. Сечение же увеличивается пропорционально квадрату линейных размеров, т.е. пропорционально квадрату радиуса. Это значит, что с увеличением линейных размеров провода при нагревании сопротивление этого провода уменьшается. Таким образом, при нагревании провода на величину его сопротивления оказывают влияние два фактора, действующие в противоположных направлениях: увеличение удельного сопротивления ρ и увеличение сечения провода.

В силу сказанного температурный коэффициент электрического сопротивления провода будет равен:

Грузовые компенсаторы не смогут компенсировать такого удлинения. Регулировка контактной сети при этом нарушится, стрелы провеса увеличатся, и условия нормального токосъема выполняться не будут. В этих условиях невозможно обеспечить высокую скорость движения поездов и возникнет реальная угроза поломки токоприемников.

С тем, чтобы не допустить такого развития событий, температуру нагрева проводов следует ограничивать величиной, допустимой по условиям обеспечения нормальных условий работы данной конструкции контактной сети. При возрастании температуры сверх этого допустимого значения необходимо ограничить тяговую нагрузку.

Кроме того, следует ограничивать и длину анкерных участков, так, чтобы длина провода не была более 800м. В этом случае при повышении температуры контактного провода на 300 0 С удлинение не будет превосходить значения 3,4м, что вполне допустимо по условиям компенсации удлинения тяговой подвески. Если принять минимальную температуру за -40 0 С, то максимальная температура контактного провода не должна превышать 60 0 С (в некоторых конструкциях 50 0 С).

При создании электровакуумных приборов необходимо подбирать металлические проводники таким образом, чтобы их ТКЛР был примерно одинаковым с ТКЛР вакуумного стекла или вакуумной керамики. Иначе могут возникнуть термоудары, приводящие к разрушению вакуумных приборов.

Механические свойства проводников характеризуют пределом прочности при растяжении и относительным удлинением при разрыве Δl /l , а также хрупкостью и твердостью. Эти свойства зависят от механической и термической обработки, а также от наличия в проводниках легирующих и примесей. Кроме того, предел прочности при растяжении зависит от температуры металла и от времени действия растягивающего усилия.

Как уже отмечалось выше, для компенсации линейного расширения контактных проводов их натяжение осуществляется температурными компенсаторами с грузами, создающими натяжение 30кН (3т). Такое натяжение обеспечивает нормальные условия токосъема. Чем больше натяжение, тем эластичнее будет подвеска и лучше условия токосъема. Однако, допустимое натяжение зависит от временного сопротивления разрыва, которое уменьшается с ростом температуры.

Для твердотянутой меди, из которой изготавливаются контактные провода, резкое снижение временного сопротивления разрыву наступает при температурах более 200 0 С. Снижается временное сопротивление разрыву и с увеличением длительности воздействия высокой температуры. Время до разрушения металла в зависимости от его абсолютной температуры Т (К) и особенностей конструкции и технологии изготовления определяют по формуле:

. (3.22)

Здесь: С 3 и С 2 - коэффициенты термической стойкости, зависящие от конструкции и свойств металлов. На рис.3.9 приведены зависимости времени до разрушения от температуры, выраженной в градусах Цельсия для проводов из разных металлов.

Таким образом, увеличивая натяжение контактного провода с целью увеличения эластичности подвески, следует учитывать и прочность контактного провода в соответствии с рис.3.9.

Рис.3. 9. Зависимость времени до разрыва металла от температуры и марки провода. 1 - алюминиевые и многопроволочные сталеалюминиевые; 2 - медные контактные; 3 - многопроволочные сталемедные биметаллические; 4 - бронзовые термостойкие контактные.

При нагревании увеличивается в результате увеличения скорости движения атомов в материале проводника с возрастанием температуры. Удельное сопротивление электролитов и угля при нагревании, наоборот, уменьшается, так как у этих материалов, кроме увеличения скорости движения атомов и молекул, возрастает число свободных электронов и ионов в единице объема.

Некоторые сплавы, обладающие большим , чем составляющие их металлы, почти не меняют удельного сопротивления с нагревом (константан, манганин и др.). Это объясняется неправильной структурой сплавов и малым средним временем свободного пробега электронов.

Величина, показывающая относительное увеличение сопротивления при нагреве материала на 1° (или уменьшение при охлаждении на 1°), называется .

Если температурный коэффициент обозначить через α , удельное сопротивление при to =20 о через ρ o , то при нагреве материала до температуры t1 его удельное сопротивление p1 = ρ o + αρ o (t1 - to) = ρ o(1 + (α (t1 - to))

и соответственно R1 = Ro (1 + (α (t1 - to))

Температурный коэффициент а для меди, алюминия, вольфрама равен 0,004 1/град. Поэтому при нагреве на 100° их сопротивление возрастает на 40%. Для железа α = 0,006 1/град, для латуни α = 0,002 1/град, для фехрали α = 0,0001 1/град, для нихрома α = 0,0002 1/град, для константана α = 0,00001 1/град, для манганина α = 0,00004 1/град. Уголь и электролиты имеют отрицательный температурный коэффициент сопротивления. Температурный коэффициент для большинства электролитов равен примерно 0,02 1/град.

Свойство проводников изменять свое сопротивления в зависимости от температуры используется в термометрах сопротивления . Измеряя сопротивление, определяют расчетным путем окружающую температуру.Константан, манганин и другие сплавы, имеющие очень небольшой температурный коэффициент сопротивления применяют для изготовления шунтов и добавочных сопротивлений к измерительным приборам.

Пример 1. Как изменится сопротивление Ro железной проволоки при нагреве ее на 520°? Температурный коэффициент а железа 0,006 1/град. По формуле R1 = Ro + Ro α (t1 - to) = Ro + Ro 0,006 (520 - 20) = 4Ro , то есть сопротивление железной проволоки при нагреве ее на 520° возрастет в 4 раза.

Пример 2. Алюминиевые провода при температуре -20° имеют сопротивление 5 ом. Необходимо определить их сопротивление при температуре 30°.

R2 = R1 - αR1 (t2 - t1) = 5 + 0 ,004 х 5 (30 - (-20)) = 6 ом.

Свойство материалов изменять свое электрическое сопротивление при нагреве или охлаждении используется для измерения температур. Так, термосопротивления , представляющие собой проволоку из платины или чистого никеля, вплавленные в кварц, применяются для измерения температур от -200 до +600°. Полупроводниковые термосопротивления с большим отрицательным коэффициентом применяются для точного определения температур в более узких диапазонах.

Полупроводниковые термосопротивления, применяемые для измерения температур называют термисторами .

Термисторы имеют высокий отрицательный температурный коэффициент сопротивления, то есть при нагреве их сопротивление уменьшается. выполняют из оксидных (подвергнутых окислению) полупроводниковых материалов, состоящих из смеси двух или трех окислов металлов. Наибольшее распространение имеют медно-марганцевые и кобальто-марганцевые термисторы. Последние более чувствительны к температуре.

Во время нагревания удельное сопротивление металла увеличивается в связи с активацией Броуновского движения атомов. Часть сплавов, имеющих большее удельное сопротивление, практически не меняют его с ростом температуры (манганин, константан). Это связано с особой структурой сплавов и малым средним временем свободного пробега электронов.

Изменение проводимости

Температурный коэффициент сопротивления — отражает изменение проводимости при нагревании или охлаждения материала. Если температурный коэффициент обозначить через α, удельное сопротивление при 20 °C через Ro, то во время нагревания материала до температуры t° его удельное сопротивление R1 = Ro (1 + (α(t1 — to))

Приведём пример. Температурный коэффициент фехрали = 0,0001 /1 градус, а для нихрома α= 0,0002 / 1 градус. Это означает, что нагревание на 100 °C, повышает электросопротивление фехрали на 1%, а нихрома на 2%.

Отрезок нихромовой проволоки 1 м

Поперечное сечение (мм) Электросопротивление t° 20 °C (ом) Электросопротивление t° 100 °C (ом) Электросопротивление t° 1000 °C (ом)
0,3 15,71 16,05 19,1
0,5 5,6 5,612 5,72
0,7 2,89 2,95 3,4,7
0,9 1,7 1,734 2,04
1,0 1,4 1,428 1,68
1,5 0,62 0,632 0,742
2,0 0,35 0,357 0,42
2,5 0,22 0,224 0,264
3,0 0,16 0,163 0,192
4,0 0,087 0,0887 0,104
5,0 0,056 0,0673 0,079
6,0 0,039 0,0398 0,0468
7,0 0,029 0,0296 0,0348
8,0 0,022 0,0224 0,0264
9,0 0,017 0,01734 0,0204
10,0 0,014 0,01428 0,0168

Свойство проводников изменять свое сопротивления в зависимости от температуры используется в термомопарах для измерения температуры металлургических процессов, а также в печах сушки и обжига.

Поставщик

Поставщик «Auremo» — признанный эксперт на рынке цветного и нержавеющего металлопроката- предлагает купить по доступной цене нихром, фехраль, термопары:. Большой выбор на складе. Соответствие ГОСТ и международным стандартам качества. Всегда в наличии нихром, фехраль, термопары, цена — оптимальная от поставщика. Оптовым заказчикам цена — льготная. Обращайтесь по номерам телефонов из раздела «Контакты», мы всегда открыты для предложений. Приглашаем к партнёрскому сотрудничеству.

Купить по выгодной цене

Поставщик «Auremo» предлагает на выгодных условиях купить нихром, фехраль, термопары, цена — обусловлена технологическими особенностями производства без включения дополнительных затрат. На сайте компании отображена самая оперативная информация, есть каталог продукции и прайс-листы. Под заказ можно купить продукцию нестандартных параметров. Цена заказа зависит от объема и дополнительных условий поставки.

Материала при изменении температуры на 1 , выражено в К -1. В электронике используются, в частности, резисторы из специальных металлических сплавов с низким значением α, как манганинових или константановых сплавов и полупроводниковых компонентов с большими положительными или отрицательными значениями α (термисторы). Физический смысл температурного коэффициет сопротивления выражен уравнением:

где dR - изменение электрического сопротивления R при изменении температуры на dT.


Проводники

Температурная зависимость сопротивления для большинства металлов близка к линейной для широкого диапазона температур и описывается формулой:

R T R 0 - электрическое сопротивление при начальной температуре T 0 [Ом]; α - температурный коэффициент сопротивления; ΔT - изменение температуры, составляет TT 0 [K].

При низких температурах температурная зависимость сопротивления проводников определяется правилу Матиесена.


Полупроводники

Зависимость сопротивления термистора NTC от температуры

Для полупроводниковых устройств, таких как термисторы, температурная зависимость сопротивления в основном определяется зависимостью концентрации носителей заряда от температуры. Это экспоненциальная зависимость:

R T - электрическое сопротивление при температуре T [Ом]; R ∞ - электрическое сопротивление при температуре T = ∞ [Ом]; W g - ширина запрещенной зоны - диапазона значений энергии, которых не иметь электрон в идеальном (бездефектной) кристалле [эВ]; k - постоянная Больцмана [эВ / K].

Логарифмируя левую и правую части уравнения, получаем:

, Где является константой материала.

Темературного коэффициент сопротивления термистора определяется уравнением:

Из зависимости R T от T имеем:


Источники

  • Теоретические основы электротехники: Учебник: В 3 т. / В. С. Бойко, В. В. Бойко, Ю. Ф. Выдолоб и др..; Под общ. ред. И. М. Чиженко, В. С. Бойко. - М.: ШЦ "Издательство" Политехника "", 2004. - Т. 1: устойчивые режимы линейных электрических цепей с сосредоточенными параметрами. - 272 с: ил. ISBN 966-622-042-3
  • Шегедин А.И. Маляр В.С. Теоретические основы электротехники. Часть 1: Учебное пособие для студентов дистанционной формы обучения электротехнических и электромеханических специальностей высших учебных заведений. - М.: Магнолия плюс, 2004. - 168 с.
  • И.М.Кучерук, И.Т.Горбачук, П.П.Луцик (2006). Общий курс физики: Учебное пособие в 3-х т. Т.2. Электричество и магнетизм. Киев: Техника.

Про эффект сверхпроводимости знают, наверно, все. Во всяком случае, слышали о нем. Суть этого эффекта в том, что при минус 273 °С сопротивление проводника протекающему току пропадает. Уже одного этого примера достаточно для того, чтобы понять, что существует его зависимость от температуры. А описывает специальный параметр - температурный коэффициент сопротивления.

Любой проводник препятствует протекающему через него току. Это противодействие для каждого токопроводящего материла разное, определяется оно многими факторами, присущими конкретному материалу, но речь дальше будет не об этом. Интерес в данный момент представляет его зависимость от температуры и характер этой зависимости.

Проводниками электрического тока обычно выступают металлы, у них при повышении температуры сопротивление растет, при понижении оно уменьшается. Величина такого изменения, приходящаяся на 1 °С, и называется температурный коэффициент сопротивления, или сокращённо ТКС.

Значение ТКС может быть положительным и отрицательным. Если он положительный, то при увеличении температуры растёт, если отрицательный, то уменьшается. Для большинства металлов, применяющихся как проводники электрического тока, ТКС положительный. Одним из лучших проводников является медь, температурный коэффициент сопротивления меди не то чтобы лучший, но по сравнению с другими проводниками, он меньше. Надо просто помнить, что значение ТКС определяет, каким при изменении параметров окружающей среды будет значение сопротивления. Его изменение будет тем значительнее, чем этот коэффициент больше.

Такая температурная зависимость сопротивления должна быть учтена при проектировании радиоэлектронной аппаратуры. Дело в том, что аппаратура должна работать при любых условиях окружающей среды, те же автомобили эксплуатируются от минус 40 °С до плюс 80 °С. А электроники в автомобиле много, и если не учесть влияние окружающей среды на работу элементов схемы, то можно столкнуться с ситуацией, когда электронный блок отлично работает при нормальных условиях, но отказывается работать при воздействии пониженной или повышенной температуры.

Вот эту зависимость от условий внешней среды и учитывают разработчики аппаратуры при ее проектировании, используя для этого при расчётах параметров схемы температурный коэффициент сопротивления. Существуют таблицы с данными ТКС для применяемых материалов и формулы расчетов, по которым, зная ТКС, можно определить значение сопротивления в любых условиях и учесть в режимах работы схемы возможное его изменение. Но для понимания того, ТКС, сейчас ни формулы, ни таблицы не нужны.

Надо отметить, что существуют металлы с очень маленьким значением ТКС, и именно они используются при изготовлении резисторов, параметры которых от изменений окружающей среды зависят слабо.

Температурный коэффициент сопротивления можно использовать не только для учета влияния колебаний параметров окружающей среды, но и для Для чего достаточно Зная материал, который подвергался воздействию, по таблицам можно определить, какой температуре соответствует измеренное сопротивление. В качестве такого измерителя может использоваться обычный медный провод , правда, придётся его использовать много и намотать в виде, например, катушки.

Всё вышеописанное не охватывает полностью всех вопросов использования температурного коэффициента сопротивления. Есть очень интересные возможности применения, связанные с этим коэффициентом в полупроводниках, в электролитах, но и того, что изложено, достаточно для понимания понятия ТКС.

На результаты измерений удельного сопротивления сильно влияют усадочные раковины, газовые пузыри, включения и другие дефекты. Более того, рис. 155 показывает, что малые количества примеси, входящей в твердый раствор, также оказывают большое влияние на измеренную проводимость. Поэтому для измерений электросопротивления изготовить удовлетворительные образцы значительно труднее, чем для

дилатометричеокого исследования. Это привело к другому методу построения диаграмм состояния, в котором измеряется температурный коэффициент сопротивления.

Температурный коэффициент сопротивления

Электросопротивление при температуре

Маттиссен установил, что увеличение сопротивления металла вследствие присутствия малого количества второго компонента в твердом растворе не зависит от температуры; отсюда следует, что для такого твердого раствора значение не зависит от концентрации. Это значит, что температурный коэффициент сопротивления пропорционален т. е. проводимости, и график коэффициента а в зависимости от состава подобен графику проводимости твердого раствора. Известно много исключений из этого правила, особенно для переходных металлов, но для большинства случаев оно приблизительно верно.

Температурный коэффициент сопротивления промежуточных фаз - обычно величина того же порядка, что и для чистых металлов, даже в тех случаях, когда само соединение имеет высокое сопротивление. Есть, однако, промежуточные фазы, температурный коэффициент которых в некотором интервале температур равен нулю или отрицателен.

Правило Маттиссена применимо, строго говоря, только к твердым растворам, но известно много случаев когда оно, повидимому, верно также для двухфазных сплавов. Если нанести температурный коэффициент сопротивления в зависимости от состава, кривая обычно имеет ту же форму, что и кривая проводимости, так что фазовое превращение можно обнаружить тем же путем. Этот метод удобно применять, когда из-за хрупкости или по другим причинам нельзя изготовить образцы, пригодные для измерений проводимости.

На практике средней температурный коэффициент между двумя температурами определяется измерением электросопротивления сплава при этих температурах. Если в рассматриваемом интервале температур не происходит фазового превращения, то коэффициент определяемый по формуле:

будет иметь такое же значение, как если интервал невелик. Для закаленных сплавов в качестве температур и

Удобно взять соответственно 0° и 100° и измерения дадут области фаз при температуре закалки. Однако, если измерения проводят при высоких температурах, интервал должен быть намного меньше, чем 100°, если граница фаз может находиться где-то между температурами

Рис. 158. (см. скан) Электропроводность и температурный коэффициент электросопротивления в системе серебро-магиий (Тамман)

Большое преимущество этого метода заключается в том, что коэффициент а зависит от относительного сопротивления образца при двух температурах, и таким образом на него не влияют раковины и другие металлургические дефекты образца. Кривые проводимости и температурного коэффициента

сопротивления в некоторых системах сплавов повторяют одна другую. Рис. 158 взят из ранней работы Таммана (кривые относятся к сплавам серебра с магнием); более поздняя работа показала, что область -твердого раствора уменьшается с понижением температуры и в районе фазы существует сверхструктура. Некоторые другие границы фаз в последнее время также претерпели изменения, так что диаграмма, представленная на рис. 158, имеет лишь исторический интерес и не может быть использована для точных измерений.

Сопротивление проводника (R) (удельное сопротивление) () зависит от температуры. Эту зависимость при незначительных изменениях температуры () представляют в виде функции:

где - удельное сопротивление проводника при температуре равной 0 o C; - температурный коэффициент сопротивления.

ОПРЕДЕЛЕНИЕ

Температурным коэффициентом электрического сопротивления () называют физическую величину , равную относительному приращению (R) участка цепи (или удельного сопротивления среды ()), которое происходит при нагревании проводника на 1 o С. Математически определение температурного коэффициента сопротивления можно представить как:

Величина служит характеристикой связи электросопротивления с температурой.

При температурах, принадлежащих диапазону, у большинства металлов рассматриваемый коэффициент остается постоянным. Для чистых металлов температурный коэффициент сопротивления часто принимают равным

Иногда говорят о среднем температурном коэффициенте сопротивления, определяя его как:

где - средняя величина температурного коэффициента в заданном интервале температур ().

Температурный коэффициент сопротивления для разных веществ

Большая часть металлов имеет температурный коэффициент сопротивления больше нуля . Это означает, что сопротивление металлов с ростом температуры возрастает. Это происходит как результат рассеяния электронов на кристаллической решетке, которая усиливает тепловые колебания.

При температурах близких к абсолютному нулю (-273 o С) сопротивление большого числа металлов резко падает до нуля. Говорят, что металлы переходят в сверхпроводящее состояние.

Полупроводники, не имеющие примесей, обладают отрицательным температурным коэффициентом сопротивления. Их сопротивление при увеличении температуры уменьшается. Это происходит вследствие того, что увеличивается количество электронов, которые переходят в зону проводимости, значит, при этом увеличивается число дырок в единице объема полупроводника.

Растворы электролитов имеют. Сопротивление электролитов при увеличении температуры уменьшается. Это происходит потому, что рост количества свободных ионов в результате диссоциации молекул превышает увеличение рассеивания ионов в результате столкновений с молекулами растворителя. Надо сказать, что температурный коэффициент сопротивления для электролитов является постоянной величиной только в малом диапазоне температур.

Единицы измерения

Основной единицей измерения температурного коэффициента сопротивления в системе СИ является:

Примеры решения задач

Задание Лампа накаливания, имеющая спираль из вольфрама включена в сеть с напряжением B, по ней идет ток А. Какой будет температура спирали, если при температуре o С она имеет сопротивление Ом? Температурный коэффициент сопротивления вольфрама .
Решение В качестве основы для решения задачи используем формулу зависимости сопротивления от температуры вида:

где - сопротивление вольфрамовой нити при температуре 0 o C. Выразим из выражения (1.1), имеем:

По закону Ома для участка цепи имеем:

Вычислим

Запишем уравнение связывающее сопротивление и температуру:

Проведем вычисления:

Ответ K


© 2024 rupeek.ru -- Психология и развитие. Начальная школа. Старшие классы