Амитоз биологическое значение. Митоз, его биологическое значение, патология. Биологическое значение амитоза

Главная / Болезни у детей

Митоз (от греч. митос – нить), или кариокинез (греч. карион – ядро, кинезис – движение), или непрямое деление. Это процесс, в ходе которого происходит конденсация хромосом и равномерное распределение дочерних хромосом между дочерними клетками. Митоз включает в себя пять фаз: профаза, прометафаза, метафаза, анафаза и телофаза. В профазе хромосомы конденсируются (скручиваются), становятся заметными и располагаются в виде клубка. Центриоли делятся на две и начинают двигаться к клеточным полюсам. Между центриолями появляются нити, состоящие из белка тубулина. Происходит образование митотического веретена. В прометафазе ядерная оболочка распадается на мелкие фрагменты, а погруженные в цитоплазму хромосомы начинают двигаться к экватору клетки. В метафазе хромосомы устанавливаются на экваторе веретена и становятся максимально компактизированными. Каждая хромосома состоит из двух хроматид, связанных друг с другом центромерами, а концы хроматид расходятся, и хромосомы принимают Х-образную форму. В анафазе дочерние хромосомы (бывшие сестринские хроматиды) расходятся к противоположным полюсам. Предположение о том, что это обеспечивается сокращением нитей веретена, не подтвердилось.

Многие исследователи поддерживают гипотезу скользящих нитей, согласно которой соседние микротрубочки веретена деления, взаимодействуя друг с другом и сократительными белками, тянут хромосомы к полюсам. В телофазе дочерние хромосомы достигают полюсов, деспирализуются, образуется ядерная оболочка, восстанавливается интерфазная структура ядер. Затем наступает разделение цитоплазмы – цитокинез. В животных клетках этот процесс проявляется в перетяжке цитоплазмы за счет втягивания плазмолеммы между двумя дочерними ядрами, а в растительных клетках мелкие пузырьки ЭПС, сливаясь, образуют изнутри цитоплазмы клеточную мембрану. Целлюлозная клеточная стенка образуется за счет секрета, накапливающегося в диктиосомах.

Продолжительность каждой из фаз митоза различна – от нескольких минут до сотен часов, что зависит как от внешних, так и внутренних факторов и типа тканей.

Нарушение цитотомии приводит к образованию многоядерных клеток. При нарушении репродукции центриолей могут возникнуть многополюсные митозы.

АМИТОЗ

Это прямое деление ядра клетки, сохраняющего интерфазную структуру. При этом хромосомы не выявляются, не происходит образования веретена деления и их равномерного распределения. Ядро делится путем перетяжки на относительно равные части. Цитоплазма может делиться перетяжкой, и тогда образуются две дочерние клетки, но может и не делиться, и тогда образуются двуядерные или многоядерные клетки.

Амитоз как способ деления клеток может встречаться в дифференцированных тканях, например, скелетных мышцах, клетках кожи, а также в патологических изменениях тканях. Однако он никогда не встречается в клетках, нуждающихся в сохранении полноценной генетической информации.

11. Мейоз. Стадии, биологическое значение.

Мейоз (греч. мейозис – уменьшение) – способ деления диплоидных клеток с образованием из одной материнской диплоидной клетки четырех дочерних гаплоидных клеток. Мейоз состоит из двух последовательных делений ядра и короткой интерфазы между ними.Первое деление состоит из профазы I, метафазы I, анафазы I и телофазы I.

В профазе I парные хромосомы, каждая из которых состоит из двух хроматид, подходят друг к другу (этот процесс называется конъюгацией гомологичных хромосом), перекрещиваются (кроссинговер), образуя мостики (хиазмы), затем обмениваются участками. При кроссинговере осуществляется перекомбинация генов. После кроссинговера хромосомы разъединяются.

В метафазе I парные хромосомы располагаются по экватору клетки; к каждой из хромосом прикрепляются нити веретена деления.

В анафазе I к полюсам клетки расходятся двухроматидные хромосомы; при этом число хромосом у каждого полюса становится вдвое меньше, чем в материнской клетке.

Затем наступает телофаза I – образуются две клетки с гаплоидным числом двухроматидных хромосом; поэтому первое деление мейоза называют редукционным.

После телофазы I следует короткая интерфаза (в некоторых случаях телофаза I и интерфаза отсутствуют). В интерфазе между двумя делениями мейоза удвоения хромосом не происходит, т.к. каждая хромосома уже состоит из двух хроматид.

Второе деление мейоза отличается от митоза только тем, что его проходят клетки с гаплоидным набором хромосом; во втором делении иногда отсутствует профаза II.

В метафазе II двухроматидные хромосомы располагаются по экватору; процесс идет сразу в двух дочерних клетках.

В анафазе II к полюсам отходят уже однохроматидные хромосомы.

В телофазе II в четырех дочерних клетках формируются ядра и перегородки (в растительных клетках) или перетяжки (в животных клетках). В результате второго деления мейоза образуются четыре клетки с гаплоидным набором хромосом (1n1c); второе деление называют эквационным (уравнительным) (рис. 18). Это – гаметы у животных и человека или споры у растений.

Значение мейоза состоит в том, что создается гаплоидный набор хромосом и условия для наследственной изменчивости за счет кроссинговера и вероятностного расхождения хромосом

12.Гаметогенез: ово - и сперматогенез.

Гаметогенез- процесс образования яйцеклеток и сперматозоидов.

Сперматогенез - от греч. sperma, род. п. spermatos - семя и...генез), образование дифференцированных мужских половых клеток -сперматозоидов; у человека и животных - в семенниках, у низших растений - в антеридиях.

У большинства высших растений в пыльцевой трубке образуются сперматозоиды, чаще называются спермиями.Сперматогенез начинается одновременно с деятельностью яичка под влиянием половых гормонов в период полового созревания подростка и далее протекает непрерывно (у большинства мужчин практически до конца жизни), имеет чёткий ритм и равномерную интенсивность. Сперматогонии, содержащие удвоенный набор хромосом, делятся путём митоза, приводя к возникновению последующих клеток - сперматоцитов 1-го порядка. Далее в результате двух последовательных делений (мейотические деления) образуются сперматоциты 2-го порядка, а затем сперматиды (клетки сперматогенеза, непосредственно предшествующие сперматозоиду). При этих делениях происходит уменьшение (редукция) числа хромосом вдвое. Сперматиды не делятся, вступают в заключительный период сперматогенеза (период формирования спермиев) и после длительной фазы дифференцировки превращаются в сперматозоиды. Происходит это путём постепенного вытяжения клетки, изменения, удлинения её формы, в результате чего клеточное ядро сперматида образует головку сперматозоида, а оболочка и цитоплазма - шейку и хвост. В последней фазе развития головки сперматозоидов тесно примыкают к клеткам Сертоли, получая от них питание до полного созревания. После этого сперматозоиды, уже зрелые, попадают в просвет канальца яичка и далее в придаток, где происходит их накопление и выведение из организма во время семяизвержения

Овогенез - процесс развития женских половыхклеток гамет, заканчивающийся формированием яйцеклеток. У женщины в течение менструального цикла созревает лишь одна яйцеклетка. Процесс овогенеза имеет принципиальное сходство со сперматогенезом и также проходит через ряд стадий: размножения, роста и созревания. Яйцеклетки образуются в яичнике, развиваясь из незрелых половых клеток - овогониев, содержащих диплоидное число хромосом. Овогонии, подобно сперматогониям,претерпевают последовательные митотические

деления, которые завершаются к моменту рождения плода.Затем наступает период роста овогониев, когда их называют овоцитами I порядка. Они окружены одним слоем клеток - гранулёзной оболочкой - и образуют так называемые примордиальные фолликулы. Плод женскогопола накануне рождения содержит около 2 млн. этих фолликулов, но лишь примерно 450 из них достигают стадии овоцитов II порядка и выходят из яичника в процессе овуляции. Созревание овоцита сопровождается двумя последовательными делениями, приводящими к

уменьшению числа хромосом в клетке вдвое. В результате первого деления мейоза образуется крупный овоцит II порядка и первое полярноетельце, а после второго деления - зрелая, способная к оплодотворению и дальнейшему

развитию яйцеклетка с гаплоидным набором хромосом и второе полярное тельце. Полярныетельца представляют собой мелкие клетки, не играют роли в овогенезе и в конечном счёте разрушаются.

13.Хромосомы. Их химический состав, надмолекулярная организация (уровни упаковки ДНК).

Процесс прямого деления без подготовки клетки называется амитозом. Впервые обнаружен в 1841 году биологом Робертом Ремаком. Термин ввёл гистолог Вальтер Флемминг в 1882 году.

Особенности

Амитоз - наиболее простой процесс, чем митоз или мейоз. Амитоз у эукариотов встречается довольно редко и более свойственен прокариотам. Это более быстрый и экономичный процесс, чем митоз. Наблюдается при стремительном восстановлении тканей. Амитозом делятся стареющие клетки и клетки ткани, которые в дальнейшем не будут делиться митотическим способом. Чаще всего это группа клеток, выполняющая строго определённые функции.

Амитоз наблюдается:

  • при увеличении корневого чехлика;
  • в клетках эпителия;
  • при росте лука;
  • в рыхлой соединительной ткани;
  • в хрящевой ткани;
  • в мускулатуре;
  • в клетках зародышевых оболочек;
  • при увеличении тканей водорослей;
  • в клетках эндосперма.

Основные особенности амитоза, по сравнению с митозом:

  • не сопровождается перестройкой всей клетки;
  • отсутствует веретено деления;
  • не происходит спирализация хроматина;
  • не выявляются хромосомы;
  • отсутствие репликации (удвоения) ДНК;
  • генетический материал распределяется неравномерно;
  • образовавшаяся клетка не способна к митозу.

Рис. 1. Митоз и амитоз.

Амитоз может происходить в опухолевых тканях. При неравномерном распределении генетического материала образуются дефектные эукариотические клетки с нарушенными внутриклеточными процессами.

Механизм

Амитоз - простой и редкий способ деления клеток, который мало изучен. Известно, что амитоз происходит за счёт простой перетяжки (инвагинации) кариолеммы - ядерной оболочки, что приводит к разделению родительской клетки на две части. Во время деления клетка находится в интерфазе, т.е. в состоянии роста и развития, никак не подготавливаясь к делению. Процесс амитоза описан в таблице.

ТОП-4 статьи которые читают вместе с этой

Не всегда при амитозе происходит цитокинез, т.е. деление тела клетки - цитоплазмы со всем её содержим. В этом случае образуется два и более ядра под одной оболочкой (многоядерная клетка), что может приводить к образованию колоний (дрожжи).

Рис. 2. Почкование дрожжей.

Значение

Амитоз имеет биологическое значение для быстрого восстановления тканей, размножения одноклеточных эукариотических и прокариотических организмов. Амитоз свойственен дрожжам, размножающимся бесполым путём (почкованием, делением), бактериям, лейкоцитам.

Бактерии и другие прокариоты не имеют ядра. Поэтому амитоз происходит несколько иначе. Сначала удваивается кольцевая ДНК, прикреплённая к складке цитоплазматической мембраны (мезосоме). Затем между двумя закреплёнными на мезосомах ДНК образуется перетяжка, разделяющая клетку пополам.

Рис. 3. Деление прокариотов.

Что мы узнали?

Выяснили, чем митоз отличается от амитоза, как происходит прямое деление клетки, какую роль играет в природе. Амитоз - наиболее быстрый способ деления, что помогает восстановить повреждённые ткани за короткий промежуток времени. Характерно эукариотам (встречается редко) и прокариотам. Прямое деление клетки не требует подготовки: спирализации хромосом, удвоения ДНК, создания веретена деления. При таком способе клетка делится неравномерно: дочерние клетки могут отличаться по размеру и количеству генетической информации.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 152.

Ознакомление с информацией, содержащейся в этой статье, позволит читателю узнать об одном из способов клеточного деления - амитозе. Мы выясним особенности протекания данного процесса, рассмотрим отличия от других видов деления и многое другое.

Что такое амитоз

Амитоз - это клеточное деление прямого типа. Данный процесс происходит благодаря обычному на две части. Однако он может упускать фазу формирования веретена для деления. А перешнуровка происходит без конденсации хроматинов. Амитоз - это процесс, свойственный клеткам животных и растений, а также простейшим организмам.

Из истории и исследований

Роберт Ремак в 1841 году дал описание процесса амитоза впервые, однако сам термин возник гораздо позже. Уже в 1882-м гистолог и биолог немецкого происхождения Вальтер Флемминг предложил современное название самого процесса. Амитоз клетки в природе является относительно редким явлением, но зачастую он может происходить, так как является необходимым.

Особенности процесса

Как происходит деление клеток? Амитоз чаще всего возникает в клетках, имеющих пониженную митотическую активность. Таким образом, множество клеток, которые должны погибнуть в результате старости либо изменений патологического характера, могут оттянуть свою кончину на какое-то время.

Амитоз - это процесс, в котором состояние ядра в период интерфазы сохраняет свои морфологические признаки: ядрышко отлично видно, как и его оболочку, ДНК не реплицируется, хроматин - белковый, ДНК и РНК не спиралезируются, а выявление хромосом в ядре клетки эукариотов отсутствует.

Существует непрямое деление клетки - митоз. Амитоз, в отличие от него, позволяет клетке после деления сохранить свою активность как функционирующего элемента. Веретено деления (структура, предназначенная для хромосомной сегрегации) при амитозе не формируется, однако ядро все равно делится, и следствием данного процесса является случайное распределение наследственной информации. Отсутствие цитокинетического процесса в результате приводит к воспроизведению клеток с двумя ядрами, которые в будущем не смогут вступать в типичный цикл митоза. Многократное повторение амитоза может привести к образованию клеток с множеством ядер.

Современное положение

Амитоз как понятие стал возникать во множестве учебников еще в 80-х годах двадцатого века. На сегодняшний день существуют предположения о том, что все процессы, которые ранее подкладывали под это понятие, на самом деле являются неверно интерпретированными результатами исследований на плохо подготовленных микропрепаратах. Ученые полагают, что явление клеточного деления, сопровождающееся разрушением последних, могло привести к тем же неверно понятым и истолкованным данным. Однако некоторые процессы деления эукариотических клеток нельзя отнести ни к митозу, ни к мейозу. Ярким примером и подтверждением тому служит процесс деления макронуклеуса (ядро клетки инфузории, крупное по размерам), во время которого сегрегация некоторых участков хромосом происходит, несмотря на то что веретено для деления не образуется.

Чем же обусловливается осложнение изучения процессов амитоза? Дело в том, что это явление сложно определить по его морфологическим признакам. Такое определение является ненадежным. Неспособность четко определить по знакам морфологии процесс амитоза основывается на том, что не всякая ядерная перетяжка является признаком самого амитоза. И даже гантелевидная ее форма, которая четко выражается в ядре, может относиться лишь к переходящему типу. Также перетяжки ядра могут быть следствием ошибок в явлении предшествующего деления митозом. Чаще всего амитоз происходит сразу после эндомитоза (способ удвоения хромосомного числа без деления как клетки, так и ее ядра). Обычно процесс амитоза приводит к удвоению Повторение данного явления создает клетку с множеством ядер. Таким образом, амитоз создает клетки с хромосомным набором полиплоидного типа.

Заключение

Подведя итоги, можно сказать, что амитоз - это процесс, во время которого клетка делится прямым типом, то есть происходит деление ядра на две части. Сам процесс не способен обеспечить клеточное деление на равные, идентичные половины. Это касается и информации о наследственности клетки.

Этот процесс имеет ряд резких отличий от поэтапного деления путем митоза. Основным различием в процессах амитоза и митоза является отсутствие разрушения оболочки ядра и ядрышка при амитозе, а также протекание процесса без образования веретена, обеспечивающего деление информации. Цитотомия в большинстве случаев не делится.

В настоящее время нет исследований современной эпохи, которые бы могли четко выделить амитоз как форму дегенерации клеток. Это же относится и к восприятию амитоза как способа клеточного деления из-за наличия очень малого количества деления целого клеточного тела. Потому амитоз, возможно, лучше относить к регулятивному процессу, протекающему внутри клеток.

Амитоз – прямое деление клеток. Амитоз встречается у эукариот достаточно редко. При амитозе ядро начинает делиться без видимых предварительных изменений. При этом не обеспечивается равномерное распределение генетического материала между дочерними клетками. Иногда при амитозе не происходит цитокинеза, то есть деления цитоплазмы, и тогда образуется двухъядерная клетка.

Рисунок – амитоз в клетках

Если же все-таки произошло деление цитоплазмы, то велика вероятность того, что обе дочерние клетки будут неполноценными. Амитоз чаще встречается в опухолевых или отмеряющих тканях.

При амитозе, в отличие от Митоза, или непрямого деления ядра, ядерная оболочка и ядрышки не разрушаются, веретено деления в ядре не образуется, хромосомы остаются в рабочем (деспирализованном) состоянии, ядро или перешнуровывается или в нём, внешне неизменном, появляется перегородка; деления тела клетки - цитотомии, как правило, не происходит; обычно амитоз не обеспечивает равномерного деления ядра и отдельных его компонентов.

Рисунок – Амитотическое деление ядер соединительнотканных клеток кролика в культуре ткани.

Изучение амитоза осложняется ненадёжностью его определения по морфологическим признакам, поскольку не каждая перетяжка ядра означает амитоз; даже выраженные «гантелевидные» перетяжки ядра могут быть преходящими; ядерные перетяжки могут быть и результатом неправильного предшествующего митоза (псевдоамитоз). Обычно амитоз следует за Эндомитозом. В большинстве случаев при амитозе делится только ядро и возникает двуядерная клетка; при повторных амитозах. могут образовываться многоядерные клетки. Очень многие двуядерные и многоядерные клетки - результат амитоза. (некоторое число двуядерных клеток образуется при митотическом делении ядра без деления тела клетки); они содержат (суммарно) полиплоидные хромосомные наборы.

У млекопитающих известны ткани как с одноядерными и двуядерными полиплоидными клетками (клетки печени, поджелудочной и слюнных желёз, нервной системы, эпителия мочевого пузыря, эпидермиса), так и только с двуядерными полиплоидными клетками (клетки мезотелия, соединительные ткани). Дву- и многоядерные клетки отличаются от одноядерных диплоидных большими размерами, более интенсивной синтетической деятельностью, увеличенным количеством различных структурных образований, в том числе хромосом. От одноядерных полиплоидных клеток дву- и многоядерные отличаются главным образом большей поверхностью ядра. На этом основано представление об амитозе как способе нормализации ядерно-плазменных отношений в полиплоидных клетках путём увеличения отношения поверхности ядра к его объёму.

Во время амитоза клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. Во многих случаях амитоз и двуядерность сопутствуют компенсаторным процессам, протекающим в тканях (например, при функциональных перегрузках, голодании, после отравления или денервации). Обычно амитоз наблюдается в тканях со сниженной митотической активностью. Этим, по-видимому, объясняется увеличение по мере старения организма числа двуядерных клеток, образующихся путём амитоза. Представления об амитозе как форме дегенерации клеток не подкрепляются современными исследованиями. Несостоятелен и взгляд на амитоз как на форму деления клеток; имеются лишь единичные наблюдения амитотического деления тела клетки, а не только её ядра. Правильнее рассматривать амитоз как внутриклеточную регулятивную реакцию.

Все случаи, когда происходит редупликация хромосом или репликация ДНК, но не наступает митоз, называются эндорепродукциями . Клетки становятся полиплоидными.

Как постоянный процесс эндорепродукция наблюдается в клетках печени, эпителия мочевыводящих путей млекопитающих. В случае эндомитоза хромосомы после редупликации становятся видны, но ядерная оболочка не разрушается.

Если делящиеся клетки на некоторое время охладить или обработать их каким-либо веществом, разрушающим микротрубочки веретена (например, колхицином), то деление клеток прекратится. При этом исчезнет веретено, а хромосомы без расхождения к полюсам будут продолжать цикл своих превращений: они начнут набухать, одеваться ядерной оболочкой. Так возникают за счет объединения всех неразошедшихся наборов хромосом крупные новые ядра. Они, естественно, будут содержать вначале 4п число хроматид и соответственно 4с количество ДНК. По определению, это уже не диплоидная, а тетраплоидная клетка. Такие полиплоидные клетки могут из стадии G 1 переходить в S-период и, если убрать колхицин, снова делиться митотическим путем, давая уже потомков с 4 n числом хромосом. В результате можно получить полиплоидные клеточные линии разной величины плоидности. Этот прием часто используется для получения полиплоидных растений.

Как оказалось, во многих органах и тканях нормальных диплоидных организмов животных и растений встречаются клетки с крупными ядрами, количество ДНК в которых кратно больше 2 n. При делении таких клеток видно, что количество хромосом у них также кратно увеличено по сравнению с обычными диплоидными клетками. Эти клетки являются результатом соматической полиплоидии. Часто это явление называют эндорепродукцией - появление клеток с увеличенным содержанием ДНК. Появление подобных клеток происходит в результате отсутствия в целом или незавершенности отдельных этапов митоза. Существует несколько точек в процессе митоза, блокада которых приведет к его остановке и к появлению полиплоидных клеток. Блок может наступить при переходе от С2-периода к собственно митозу, остановка может произойти в профазе и метафазе, в последнем случае часто происходит нарушение целостности веретена деления. Наконец, нарушения цитотомии также могут прекратить деление, что приведет к появлению двуядерных и полиплоидных клеток.

При естественной блокаде митоза в самом его начале, при переходе G2 - профазы, клетки приступают к следующему циклу репликации, который приведет к прогрессивному увеличению количества ДНК в ядре. При этом не наблюдается никаких морфологических особенностей таких ядер, кроме их больших размеров. При увеличении ядер в них не выявляются хромосомы митотического типа. Часто такой тип эндорепродукции без митотической конденсации хромосом встречается у беспозвоночных животных, обнаруживается он также и у позвоночных животных, и у растений. У беспозвоночных в результате блока митоза степень полиплоидии может достигать огромных значений. Так, в гигантских нейронах моллюска тритонии, ядра которых достигают величины до 1 мм (!), содержится более 2-105 гаплоидных наборов ДНК. Другим примером гигантской полиплоидной клетки, образовавшейся в результате редупликации ДНК без вступления клеток в митоз, может служить клетка шелкоотделительной железы тутового шелкопряда. Ее ядро имеет причудливую ветвистую форму и может содержать огромные количества ДНК. Гигантские клетки железы пищевода аскариды могут содержать до 100000с ДНК.

Особый случай эндорепродукции представляет собой увеличение плоидности путем политении. При политении в S-периоде при репликации ДИК новые дочерние хромосомы продолжают оставаться в деспирализованном состоянии, но располагаются друг около друга, не расходятся и не претерпевают митотическую конденсацию. В таком истинно интерфазном виде хромосомы снова вступают в следующий цикл репликации, снова удваиваются и не расходятся. Постепенно в результате репликации и нерасхождения хромосомных нитей образуется многонитчатая, политенная структура хромосомы интерфазного ядра. Последнее обстоятельство необходимо подчеркнуть, так как такие гигантские политенные хромосомы никогда не участвуют в митозе, более того - это истинно интерфазные хромосомы, участвующие в синтезе ДНК и РНК. От митотических хромосом они резко отличаются и по размерам: в несколько раз толще митотических хромосом из-за того, что состоят из пучка множественных неразошедшихся хроматид - по объему политенные хромосомы дрозофилы в 1000 раз "больше митотических. Они в 70-250 раз длиннее митотических из-за того, что в интерфазном состоянии хромосомы менее конденсированы (спирализованы), чем митотические хромосомы. Кроме того, у двукрылых их общее число в клетках равно гаплоидному из-за того, что при политенизации происходит объединение, конъюгация гомологичных хромосом. Так, у дрозофилы в диплоидной соматической клетке 8 хромосом, а в гигантской клетке слюнной железы - 4. Встречаются гигантские полиплоидные ядра с политенными хромосомами у некоторых личинок двукрылых насекомых в клетках слюнных желез, кишечника, мальпигиевых сосудов, жирового тела и т.д. Описаны политенные хромосомы в макронуклеусе инфузории стилонихии. Лучше всего этот тип эндорепродукции изучен у насекомых. Было подсчитано, что у дрозофилы в клетках слюнных желез может произойти до 6-8 циклов редупликации, что приведет к общей плоидности клетки, равной 1024. У некоторых хирономид (их личинку называют мотылем) плоидность в этих клетках достигает 8000-32000. В клетках политенные хромосомы начинают быть видны после достижения политении в 64-128 п, до этого такие ядра ничем, кроме размера, не отличаются от окружающих диплоидных ядер.

Отличаются политенные хромосомы и своим строением: они структурно неоднородны по длине, состоят из дисков, междисковых участков и пуфов. Рисунок расположения дисков строго характерен для каждой хромосомы и отличается даже у близких видов животных. Диски представляют собой участки конденсированного хроматина. Диски могут отличаться друг от друга по толщине. Общее их число у политенных хромосом хирономид достигает 1,5-2,5 тыс. У дрозофилы имеется около 5 тыс. дисков. Диски разделены междисковыми пространствами, состоящими, так же как и диски, из фибрилл хроматина, только более рыхла упакованных. На политенных хромосомах двукрылых часто видны вздутия, пуфы. Оказалось, что пуфы возникают на местах некоторых дисков за счет их деконденсации и разрыхления. В пуфах выявляется РНК, которая там же и синтезируется. Рисунок расположения и чередования дисков на политенных хромосомах постоянен и не зависит ни от органа, ни от возраста животного. Это является хорошей иллюстрацией одинаковости качества генетической информации в каждой клетке организма. Пуфы являются временными образованиями на хромосомах, и в процессе развития организма существует определенная последовательность в их появлении и исчезновении на генетически различных участках хромосомы. Эта последовательность различна для разных тканей. Сейчас доказано, что образование пуфов на политенных хромосомах - это выражение генной активности: в пуфах синтезируются РНК, необходимые для проведения белковых синтезов на разных этапах развития насекомого. В естественных условиях у двукрылых особенно активны в отношении синтеза РНК два самых крупных пуфа, так называемые кольца Бальбиани, который описал их 100 лет тому назад.

В других случаях эндорепродукции полиплоидные клетки возникают в результате нарушений аппарата деления - веретена: при этом происходит митотическая конденсация хромосом. Такое явление носит название эндомитоз, потому что конденсация хромосом и их изменения происходят внутри ядра, без исчезновения ядерной оболочки. Впервые явление эндомитоза было хорошо изучено в клетках: различных тканей водяного клопа - геррии. В начале эндомитоза хромосомы конденсируются, благодаря чему становятся хорошо различимы внутри ядра, затем хроматиды обособляются, вытягиваются. Эти стадии по состоянию хромосом могут соответствовать профазе и метафазе обычного митоза. Затем хромосомы в таких ядрах исчезают, и ядро принимает вид обычного интерфазного ядра, но размер его увеличивается в соответствии с увеличением плоидности. После очередной редупликации ДНК такой цикл эндомитоза повторяется. В результате могут возникнуть полиплоидные (32 п) и даже гигантские ядра. Сходный тип эндомитоза описан при развитии макронуклеусов у некоторых инфузорий, у целого ряда растений.

Результат эндорепродукции : полиплоидия и увеличение размеров клетки.

Значение эндорепродукции : не прерывается деятельность клетки. Так, например, деление нервных клеток привело бы к временному выключению их функций; эндорепродукция позволяет без перерыва в функционировании нарастить клеточную массу и тем самым увеличить объем работы, выполняемый одной клеткой.

Амитоз , или прямое деление клетки (от греч. α - частица отрицания и греч. μίτος - «нить») - деление клеток простым разделением ядра надвое.

Впервые он описан немецким биологом Робертом Ремаком в 1841 году, термин предложен гистологом Вальтером Флеммингом в 1882 году. Амитоз - редкое, но иногда необходимое явление. В большинстве случаев амитоз наблюдается в клетках со сниженной митотической активностью: это стареющие или патологически измененные клетки, часто обреченные на гибель (клетки зародышевых оболочек млекопитающих, опухолевые клетки и др.).

При амитозе морфологически сохраняется интерфазное состояние ядра, хорошо видны ядрышко и ядерная оболочка. Репликация ДНК отсутствует . Спирализация хроматина не происходит, хромосомы не выявляются. Клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. При амитозе делится только ядро, причем без образования веретена деления, поэтому наследственный материал распределяется случайным образом.

Если количество исходного генетического материала принять за 100%, а количе-ство генетического материала в разделившихся клетках обозначить x и y , то

x = 100% -y , a y = 100% -x .

Отсутствие цитокинеза приводит к образованию двуядерных клеток, которые в дальнейшем не способны вступать в нормальный митотический цикл. При повторных амитозах могут образовываться многоядерные клетки.

Амитоз- является прямым делением клетки. Встречается в некоторых специализированных клетках или в клетках, где не обязательно сохранение генетической информации из поколения в поколение.

Значение Амитоза для организма не однозначно, поскольку он бывает регенеративным и генеративным.

Регенеративный , имеет положительное значение, так как происходит когда нужно быстро восстановить целостность организма. После опеции, травм, ожогов. Клетки быстро делятся образуется рубец.

Генеративный , встречается в норме при делении фолликулярных клеток яичника. Обычно один раз в месяц созревает 1 яйцеклетка и окружающие ее фолликулярные клетки начинают быстро делится, формируя зрелый фолликул. После выхода из него яйцеклетки, он заполняется желтым телом и затем растворяется, а на его месте формируется рубец. То есть в данном случае не нужны точные механизмы распределения генетической информации, так как фолликул все равно погибает.

Но этот механизм тоже имеет свои минусы: поскольку генетическая информация в дочерних клетках изменяется случайным образом, то эти клетки, в случае, если они не гибнут физиологическим путем, являются источниками рака яичников. Как известно, кистозные и опухолевые процессы в яичниках, встечаются довольно часто.

Дегенеративный митоз встречается в стареющих, патологически измененных клетках. Например при воспалениях или в клетках злокачественных опухолей.

Реактивный митоз наблюдается при воздействии на клетку химических или физических факторов.

Таким образом, Амитоз приводит к образованию клеток, имеющих неравную генетическую информацию. После деления амитозом клетка утрачивает способность деления Митозом.



© 2024 rupeek.ru -- Психология и развитие. Начальная школа. Старшие классы